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Solution 262.6 – Tans
Establish the following result:

tan
π

20

tan3 3π

20

=
10 +

√
50− 22

√
5

10−
√

50− 22
√

5
.

Bryan Orman
Let t = tan(π/20); then

tan
3π

20
= tan

(
π

4
− 2π

20

)
=

1− 2t

1− t2

1 +
2t

1− t2
=

3t− t3

1− 3t2

using the tan 3A formula. Thus

(t− 1)5 = 20t2(t− 1), or (1− t)2 = 2t
√

5.

Since t 6= 1 put t = (1− ε)/(1 + ε); then ε
√

5 + 2
√

5 =
√

5, giving

tan
π

20
=

√
5 + 2

√
5−
√

5√
5 + 2

√
5 +
√

5
and tan

3π

20
=

√
5 + 2

√
5− 1√

5 + 2
√

5 + 1
.

Now write

tan
π

20

tan3 3π

20

=

(√
5 + 2

√
5 + 1√

5 + 2
√

5− 1

)3

·
√

5 + 2
√

5−
√

5√
5 + 2

√
5 +
√

5
.

Then setting this equal to (a+ b)/(a− b), say, we have

5b(3 +
√

5) = a(3−
√

5)

√
5 + 2

√
5

after considerable simplification! As
3−
√

5

3 +
√

5
=

7− 3
√

5

2
we have

10b = a

√
(7− 3

√
5)2(5 + 2

√
5),

which reduces to 10b = a
√

50− 22
√

5. Finally take

a = 10 and b =

√
50− 22

√
5.
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O Botafumeiro
An example of parametric pumping

Bryan Orman
One of the oldest examples of parametric pumping is the swinging of the
famous thurible, the giant censer, O Botafumeiro, in the cathedral of St
James in Santiago de Compostela, in the north west of Spain.

The censer itself weighs about 57 kg and hangs in the transept, it swings
on a rope about 21 m long with an eventual amplitude of about 80◦ in about
17 cycles.

To appreciate the spectacle, and to put the modelling of the system
into context, a visit to the website www.catedraldesantiago.es/es/node/315
would be extremely helpful before reading too far into this article. Further-
more, the public performances have been well recorded by members of the
congregation over the years and, to commence a search for demonstrations
of the parametric pumping in action, just Google ‘Botafumeiro video’ and
then ‘Videos about “botafumeiro” on Vimeo’, to view some good examples
of the parametric pumping of the censer.

The initial position for the smooth pumping of the censer is achieved
by moving the censer off the vertical, then a team of eight men, called
tiraboleiros, pull on ropes attached to the main rope of the system in a
cyclical manner in order to increase and to decrease the rope’s length as the
censer passes through the lowest and highest points of the motion.

The left-hand figure, below, not to scale, illustrates the actual trajectory
of the censer through one complete cycle to the right. An oscillation would
consist of a cycle to the right followed by one to the left, returning the censer
to its starting side, albeit with a larger amplitude.
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This article will show how a reasonably good mathematical model can
be achieved by starting with the simple but unrealistic modelling assump-
tion that the pumping takes place instantaneously at the lowest and highest
points of the trajectory. The right-hand figure on the previous page repre-
sents this situation.

On the upper and lower circular arcs we assume that the system be-
haves as a simple pendulum of constant energy and so the usual modelling
assumptions have to apply, namely that the mass of the rope is neglected,
the censer is a particle, and air resistance on the censer is neglected. Con-
sider the single cycle from A to D. Let the censer mass be M and let
the maximum and minimum lengths of the rope be L and L−∆L so that
OC = L, OC ′ = L − ∆L, and therefore CC ′ = ∆L. By the principle of
conservation of energy we have E(B) = E(C) and E(D) = E(C ′), and tak-
ing the datum for gravitational potential energy to be at the lowest point
C, these equations become

MgL(1− cosα) =
1

2
ML2α̇2,

Mg(L−∆L)(1− cosβ) =
1

2
M(L−∆L)2β̇2,

where
.
α and

.

β are the angular speeds at C and C ′ respectively. Angular
momentum is also conserved at the vertical OC since the two forces acting
on the particle, the rope tension and the weight of the particle, are both
perpendicular to the direction of motion of the particle and therefore do no
work on the particle. Thus

ML2α̇ = M(L−∆L)2β̇.

By eliminating the angular speeds from these three equations we have

sin
β

2
=

(
L

L−∆L

)3/2

sin
α

2
.

This formula enables us to calculate successive amplitudes during the para-
metric pumping process with α = αn and β = αn+1 if the initial amplitude
α0, say, is specified.

Using the data L = 20.9 and ∆L = 2.9 with initial angle α0 = 13◦ we
find that α7 = 68◦ and α8 = 89◦. This means that the system is pumped to
about the maximum amplitude in about half the number of observed cycles.
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We now remove the instantaneous pumping assumption and assume
that this takes place from C to D, as shown in the following figures.
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The left-hand figure shows the trajectory of the particle in this first
revision of the model and the right-hand figure shows the force diagram.
Here T is the tension in the rope and W is the weight of the particle. We
note that r is the length of the rope at angle θ, with r = L at C and
r = L−∆L at D.

From Newton’s Second Law: M r̈ = T+W. And resolving in the radial
direction, we have T = M(r θ̇2 + g cos θ − r̈).

Now energy is supplied to the system through the pumping from C to

D and the work done by the force T is given by
∫D
C

T · dr = −
∫D
C
T dr

since T = −T r̂ and dr = dr θ̂, where r̂ and θ̂ are the radial and transverse
unit vectors. So the increase in energy is given by

∆E = −M
∫ D

C

(
r θ̇2 + g cos θ − r̈

)
dr

and, from conservation of energy, θ̇2 = 2(g/r)(cos θ − cosα) so that ∆E
becomes

−Mg

∫ D

C

(3 cos θ − 2 cosα) dr +M

∫ D

C

r̈ dr.

Now at C, θ = 0 and ṙ = 0, and at D, θ = β and ṙ = 0. Also dr = ∆L.
Thus ∆E = 3Mg(1− cosβ)∆L and, to first order, this is

∆E(pumping) = 3Mg(1− cosα)∆L.
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The energy balance is then E(D) = E(A) + ∆E(pumping), which gives

Mg(L−∆L)(1− cosβ) = Mg(L−∆L)(1− cosα) + 3Mg(1− cosα)∆L.

Rearranging, again using half angles, and to first order,

sin
β

2
=

√
1 +

3∆L

L
sin

α

2
.

With the previous data we find that α9 = 67◦ and α10 = 82◦. Again
the number of cycles is far less than the expected number of 17. This means
that the instantaneous pumping is more efficient than this realistic pumping
with the conservative force T. Energy has to be removed from the system
during the cycle if we want the number of cycles to achieve the maximum
amplitude to increase.

The model has to include air resistance (air drag) on both the rope and
the censer, and this will give us our final model. To this end we note that,
to first order, equal losses of energy occur during the motion from B to C
as from C to D. So we evaluate the energy loss from C to E, the simple
pendulum approximation to the C to D motion, and double the answer to
obtain the total loss of energy in a cycle.

The air resistance is given by R = ρv2Acd/2, where ρ is the density
of the air, v is the speed of the object, A is the cross sectional area of the
object and cd is the drag constant. We look at the energy loss from the
censer’s motion and from the rope’s motion separately.

P

L

R r

Θ P

dl

l

∆R

O

E

Θ

O

C

E

Θ

CENSER: The work done by the drag force in this case is
∫ E
C

R · dr =∫ E
C
Rds since R = −R r̂ and dr = ds θ̂, where s is the arc length from C
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along CE. So the increase in energy is given by

∆E = −
∫ Lβ

0

1

2
ρv2Acd ds.

Using ds = Ldθ and v = Lθ̇ and also Lθ̇2 = 2g(cos θ − cosβ) gives

∆E = − ρgAL2cd

∫ β

0

(cos θ − cosβ)dθ

and finally
∆E(censer) = − ρgAL2cd(sinβ − β cosβ).

ROPE: The work done by the drag force in this case is a little more
involved since the speed of the rope varies along its length. Consider an
element of the rope dl, a distance l from O. Let the thickness of the rope
be h; then A = h dl. Furthermore the speed of the element is lv/L. The
force on the element is then

δR =
1

2
ρ

(
lv

L

)2

(h dl)cd

and, since ds = l dθ, the work done on this element is −
∫ β
0
δR l dθ, which

becomes

−1

2
ρhcdl

3 dl

∫ β

0

θ̇2dθ.

The total increase in energy from the rope is obtained by integrating this
over its length, giving

−1

2
ρhcd

1

4
L4

∫ β

0

θ̇2dθ

and finally

∆E(rope) = − ρghcd
1

4
L3(sinβ − β cosβ).

For the complete cycle we need to add together the contributions from
the censer and the rope, and double the answer, thus

∆E(drag) = − 2ρgL2

(
AcD +

1

4
hLcd

)
(sinα− α cosα),

where we have replaced the angle β by α (true to first order), and have
designated the censer and rope drag constants by cD and cd respectively.
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The energy balance equation is now

E(D) = E(A) + ∆E(pumping) + ∆E(drag).

Inserting the expressions for the four terms into this equation, using half
angles as before, and rearranging, we get

sin2 β

2
=

(
1 +

3∆L

L

)
sin2 α

2
−K(sinα− α cosα),

where K is a constant, namely K =
ρL

M

(
AcD +

hLcd
4

)
.

To test this final model we employ the following data (in SI units):
L = 20.6, ∆L = 2.90, M = 56.5, h = 0.045, d = 1.2 (censer height), A =
π(d/3)2 (notional cross-sectional area of the censer), ρ = 1.25, cD = 0.59
and cd = 1.15. Consequently K = 0.257 and 1 + 3∆L/L = 1.422. The
recurrence formula for the successive amplitudes is then

sin2 αn+1

2
= (1.422) sin2 αn

2
− (0.257)(sinαn − αn cosαn)

with α0 = 13◦ as before. We find that α20 = 68.3◦ and α21 = 69.2◦, and the
amplitude approaches about 73◦, asymptotically. The maximum amplitude
achieved in practice is about 82◦ and this occurs after 17 pumping cycles.
Our final model will never give this maximum amplitude.

One obvious omission in the model is that of the mass of the rope. It
will change the total energy and the angular momentum, but these changes
cancel out to first order. Also the rope is not rigid, it is flexible, as can be
observed at large amplitudes.

Furthermore our model treats the system as a pendulum of variable
length whereas in practice it is a compound double pendulum, hinged at
the censer. Incorporating this into the model is necessary, but really quite
involved. It will however improve the model. Likewise, the pumping and the
drag have been considered separately, as can be seen in the energy balance
equation. They are interdependent since the trajectory CD is dependant on
both the pumping and the drag. Again too complicated for us to consider
but it will improve the model.

And finally, the transitions A to B and D to E are not instantaneous.
They can be considered as motion under gravity since the real pumping
appears to switch off before the highest points A and D are reached.
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Solution 261.7 – Integrals involving roots
Let a and b be positive integers. Compute

I =

∫ 1

0

(
1− x1/a

)1/b
dx

and hence show that it is rational.

Reinhardt Messerschmidt
We will show that the function x 7→ (1 − x1/a)1/b has an antiderivative of
the form (

1− x1/a
)1/b+1

( a−1∑
k=0

ckx
k/a

)
,

where c0, c1, . . . , ca−1 are rational numbers that will be determined.

We have

d

dx

(
1− x1/a

)1/b+1
( a−1∑
k=0

ckx
k/a

)

=

(
b+ 1

b

)(
1− x1/a

)1/b(−x1/a−1
a

)( a−1∑
k=0

ckx
k/a

)

+
(

1− x1/a
)1/b+1

( a−1∑
k=0

kck
a
xk/a−1

)

=
(

1− x1/a
)1/b{ a−1∑

k=0

−(b+ 1)ck
ab

x(k+1)/a−1

+

a−1∑
k=0

kck
a
xk/a−1 +

a−1∑
k=0

−kck
a

x(k+1)/a−1
}
.

Note that

a−1∑
k=0

−(b+ 1)ck
ab

x(k+1)/a−1 =
−(b+ 1)

ab
ca−1 +

a−2∑
k=0

−(b+ 1)ck
ab

x(k+1)/a−1,

a−1∑
k=0

kck
a
xk/a−1 =

a−1∑
k=1

kck
a
xk/a−1 =

a−2∑
k=0

(k + 1)ck+1

a
x(k+1)/a−1,

a−1∑
k=0

−kck
a

x(k+1)/a−1 =
−(a− 1)

a
ca−1 +

a−2∑
k=0

−kck
a

x(k+1)/a−1,
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therefore

d

dx

(
1− x1/a

)1/b+1
( a−1∑
k=0

ckx
k/a

)
=
(

1− x1/a
)1/b{−(b+ 1)

ab
ca−1 +

−(ab− b)
ab

ca−1

+

a−2∑
k=0

(
−(b+ 1)

ab
ck +

−kb
ab

ck +
(k + 1)b

ab
ck+1

)
x(k+1)/a−1

}
.

If we let

−(b+ 1)

ab
ca−1 +

−(ab− b)
ab

ca−1 = 1,

−(b+ 1)

ab
ck +

−kb
ab

ck +
(k + 1)b

ab
ck+1 = 0 for k = 0, 1, . . . , a− 2,

in other words,

ca−1 =
−ab
ab+ 1

, ck =
(k + 1)b

(k + 1)b+ 1
ck+1 for k = 0, 1, . . . , a− 2, (∗)

then
d

dx

(
1− x1/a

)1/b+1
( a−1∑
k=0

ckx
k/a

)
=
(

1− x1/a
)1/b

.

It follows from (∗) that

c0 = −
a∏
k=1

kb

kb+ 1
,

therefore∫ 1

0

(
1−x1/a

)1/b
dx =

(
1−x1/a

)1/b+1
( a−1∑
k=0

ckx
k/a

)∣∣∣∣1
0

= −c0 =

a∏
k=1

kb

kb+ 1
.

For example, ∫ 1

0

(
1− x1/3

)1/5
dx =

5

6
· 10

11
· 15

16
=

125

176
.
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Steve Moon
First make the substitution yb = 1− x1/a, so that

x1/a = 1− yb, x = (1− yb)a, dx = − abyb−1(1− yb)a−1dy,

x = 0 → y = 1, x = 1 → y = 0.

Then

I = −
∫ 0

1

yabyb−1(1− yb)a−1dy =

∫ 1

0

abyb(1− yb)a−1dy.

Now integrate by parts,

u = y, du = dy,

dv = abyb−1(1− yb)a−1, v = − (1− yb)a;

I =
[
−y(1− yb)a

]1
0

+

∫ 1

0

(1− yb)ady =

∫ 1

0

(1− yb)ady.

The integrand has a finite binomial expansion with final term in yab. So

I =

∫ 1

0

(
1− ayb +

a(a− 1)

2
y2b − · · ·+ (−1)ka!

k!(a− k)!
ykb + · · ·+ (−1)ayab

)
dy,

(k = 0, 1, . . . , a), and we integrate term by term:

I =

[
y − ayb+1

b+ 1
+ · · ·+ (−1)ka!ykb+1

k!(a− k)!(kb+ 1)
+ · · ·+ (−1)ayab+1

ab+ 1

]1
0

=

a∑
k=0

(−1)ka!

k!(a− k)!
· 1

kb+ 1
,

which is rational since each term of the sum is rational.

Tony Forbes
Another problem is suggested. Prove that the three given answers are the
same (see next page for the 3rd):

a∏
k=1

kb

kb+ 1
=

a∑
k=0

(−1)ka!

k!(a− k)!
· 1

kb+ 1
=

Γ(a+ 1)Γ(1 + 1/b)

Γ(a+ 1 + 1/b)
.
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Tommy Moorhouse
We make use of the elementary fact (easy to prove if you’re not convinced)
that the product of two rational numbers is rational.

We also use the binomial expansion:

(1 + z)β = 1 + βz +
β(β − 1)

2!
z2 + · · ·+ β(β − 1) · · · (β − k)

(k + 1)!
zk+1 + · · · .

Here z = −x1/a and β = 1/b and the integration term by term gives

x− βx1+1/a

(1 + 1/a)
+ · · ·+ (−1)k+1 β(β − 1) · · · (β − k)x1+(k+1)/a

(k + 1)!(1 + (k + 1)/a)
+ · · · .

The substitution x = 1 gives us an infinite sum

I = 1 +

∞∑
k=0

(−1)k+1 aβ(β − 1)(β − 2) · · · (β − k)

(k + 1)!(a+ (k + 1))
.

We recognize this (at least if we have a standard textbook to refer to) as

F (a,−β, a+ 1, 1),

the hypergeometric function. This evaluates to (see, for example, Whittaker
and Watson, p. 282)

Γ(a+ 1)Γ(1 + β)

Γ(1)Γ(a+ 1 + β)
.

Since a is an integer we can expand the Γ functions, e.g.

Γ(a+ 1 + β) = (a+ β)Γ(a+ β) = · · · = (a+ β)(a+ β − 1) · · ·βΓ(β).

The Γ(β)s cancel and the remaining expression is rational.

Reference

E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed.,
Cambridge, 1927 (reprinted 1992).

Problem 265.1 – Three circles
There are three concentric circles with radii a ≤ b ≤ c. Show that it is
possible to draw an equilateral triangle with one vertex on each circle if
c ≤ a+ b but not if c > a+ b.
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Solution 188.1 – Ones
Throw n dice. The total score is s. What is the expected number
of ones?

Robin Whitty
The number of ways to put s indistinguishable balls into n distinguished

boxes, s and n positive, is equal to

(
s+ n− 1

n− 1

)
. If our boxes are dice then

we must make sure every box has at least one ball in it by subtracting n
from the s balls at our disposal, reducing our count to(

s− n+ n− 1

n− 1

)
=

(
s− 1

n− 1

)
.

To make sure that no box gets more than six balls is more work and gives
the following inclusion–exclusion formula:

# ways to get a total of s using n dice =
∑
i≥0

(−1)i
(
n

i

)(
s− 6i− 1

n− 1

)
.

We will denote this count by F (s, n).

Now let G(s, n, k) denote the number of ways to get a total of s us-
ing n dice of which k dice show a score of 1. Then the expected num-
ber of ones on throwing n dice and getting a total score of s is given by
E(s, n) =

(∑n
k=0 kG(s, n, k)

)
/F (s, n).

To calculate the value of G(s, n, k) we choose k dice to be equal to 1,
increase the minimum score of the remaining dice to 2 and apply inclusion–
exclusion as before, but to n− k dice:

G(s, n, k) =

(
n

k

)∑
i≥0

(−1)i
(
n− k
i

)(
s− n− 5i− 1

n− k − 1

)
.

This is valid unless s = n = k in which case G(s, n, k) = 1 but the inclusion–
exclusion does not apply since the number of dice, n−k, is no longer positive.

We can now calculate E(s, n); a plot is given below for n = 50 (lower
curve) and n = 100 (upper curve). We do not get much information from
this calculation! However, we can try and simplify things under the assump-
tion that s is not much larger than n. In this case the chance of more than
six balls being put into any dice box is small unless k is large. So we can try
just taking the first term in each inclusion–exclusion summation (ignoring
the ‘error terms’). The resulting approximation to E(s, n) simplifies very
satisfactorily:
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E(s, n) ≈

n∑
k=0

k

(
n

k

)(
s− n− 1

n− k − 1

)
(
s− 1

n− 1

) =
n(n− 1)

s− 1
.

This approximation is compared for n = 100 in the plot below. It
appears to be quite effective up to about s = 200.

100 200 300 400 500 600
s

20

40

60

80

100

EHs,nL, n = 50, 100

200 300 400 500 600
s

20

40

60

80

100

9900�Hs - 1L vs EHs,100L



Page 14 M500 265

Solution 261.4 – Projectile
A projectile is fired from a cannon in a uniformly distributed
random direction above the ground. Show that the probability
of it exceeding a fraction α of its maximum range is

√
1− α.

As usual, air resistance is non-existent, the ground is flat and
gravity acts vertically downwards.

Reinhardt Messerschmidt
Step 1. Suppose the cannon is at the origin of (x, y, z)-space, with the
(x, y)-plane being the ground and the positive z-axis pointing to the sky.
Let θ ∈ [0, 2π] be the azimuthal angle at which the projectile is fired, i.e.
the angle between the positive x-axis and the projection of the line of fire
onto the (x, y)-plane. Let φ ∈ [0, π/2] be the elevation angle at which the
projectile is fired, i.e. the angle between the line of fire and its projection
onto the (x, y)-plane. We will find the maximum range of the projectile
and the values of (θ, φ) for which the projectile exceeds the fraction α of its
maximum range.

After it leaves the cannon, the projectile’s acceleration is

(0, 0,−g),

where g > 0 is the gravitational constant. The projectile’s initial velocity is

(σ cosφ cos θ, σ cosφ sin θ, σ sinφ),

where σ > 0 is the speed at which it leaves the cannon. The projectile’s
velocity at time t is

(σ cosφ cos θ, σ cosφ sin θ, σ sinφ− gt),

and its position at time t is

(σt cosφ cos θ, σt cosφ sin θ, σt sinφ− gt2/2).

The equation σt sinφ− gt2/2 = 0 implies t = 0 or t = 2σg−1 sinφ, therefore
the projectile hits the ground at time 2σg−1 sinφ. Its distance from the
cannon at this time is√(

σ(2σg−1 sinφ) cosφ cos θ
)2

+
(
σ(2σg−1 sinφ) cosφ sin θ

)2
= (2σ2g−1 sinφ cosφ)

√
cos2 θ + sin2 θ

= σ2g−1 sin(2φ),
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which can be viewed as a function of φ. The first derivative is

2σ2g−1 cos(2φ),

and the equation 2σ2g−1 cos(2φ) = 0 implies φ = π/4. The second deriva-
tive is

−4σ2g−1 sin(2φ),

which is negative at φ = π/4, therefore the maximum range is attained if
and only if φ = π/4. The maximum range is

σ2g−1 sin(2(π/4)) = σ2g−1.

The projectile exceeds the fraction α of its maximum range if and only if

σ2g−1 sin(2φ) > ασ2g−1,

i.e. if and only if
β < φ < π/2− β, (∗)

where β = 1
2 arcsinα.

Step 2. For every λ, µ such that 0 ≤ λ ≤ µ ≤ π/2, let E(λ, µ) be the set of
all points on the unit sphere with an elevation angle between λ and µ. We
will find the area of E(λ, µ) by revolving the unit circle in the (x, z)-plane
around the z-axis.

x

z

1

1

sinλ

sinµ

λ
µ
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By the formula for the area of a surface of revolution,

Area of E(λ, µ) =

∫ sinµ

sinλ

2πx

√
1 +

(
dx

dz

)2

dz,

where x =
√

1− z2. We have

dx

dz
=

−z√
1− z2

,

√
1 +

(
dx

dz

)2

=
1√

1− z2
,

therefore

Area of E(λ, µ) = 2π

∫ sinµ

sinλ

dz = 2π(sinµ− sinλ). (∗∗)

Step 3. By (∗) and (∗∗), the probability that a projectile fired in a uniformly
distributed random direction exceeds the fraction α of its maximum range
is

Area of E(β, π/2− β)

Area of E(0, π/2)
=

2π(sin(π/2− β)− sinβ)

2π(sin(π/2)− sin 0)
= cosβ − sinβ.

We will show that cosβ − sinβ =
√

1− α.

By the half-angle identities for cos and sin,

cosβ = cos( 1
2 arcsinα) =

√
1
2 (1 + cos(arcsinα)),

sinβ = sin( 1
2 arcsinα) =

√
1
2 (1− cos(arcsinα)).

Note that

1 = cos2(arcsinα) + sin2(arcsinα) = cos2(arcsinα) + α2;

therefore cos(arcsinα) =
√

1− α2 and so

cosβ − sinβ =

√
1
2

(
1 +

√
1− α2

)
−
√

1
2

(
1−

√
1− α2

)
.

Hence

(cosβ − sinβ)2 =
1 +
√

1− α2

2
− 2

√
1
4

(
1− (1− α2)

)
+

1−
√

1− α2

2

= 1− α. �
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Solution 260.1 – Iterated trigonometric integral
For positive integer n, define Fn(x) by

F1(x) = sin(arctanx), Fn+1(x) = sin(arctanFn(x)).

Show that for a ≥ 0,∫ a

0

Fn(x) dx =

√
na2 + 1− 1

n
.

Reinhardt Messerschmidt
We will show that if x > 0 and n ∈ {0, 1, . . . } then

sin

(
arctan

(
x√

nx2 + 1

))
=

x√
(n+ 1)x2 + 1

. (∗)

Let

y = sin

(
arctan

(
x√

nx2 + 1

))
.

Applying (tan ◦ arcsin) on both sides,

x√
nx2 + 1

= tan(arcsin y) =
sin(arcsin y)

cos(arcsin y)
=

y

cos(arcsin y)
.

Squaring both sides,

x2

nx2 + 1
=

y2

cos2(arcsin y)
=

y2

1− sin2(arcsin y)
=

y2

1− y2
.

Rearranging,

y2 =
x2

(n+ 1)x2 + 1
.

Since x > 0 we have y > 0, therefore

y =
x√

(n+ 1)x2 + 1
.

It follows from (∗) and induction that for every n ∈ {1, 2, . . . },

Fn(x) =
x√

nx2 + 1
,

therefore∫ a

0

Fn(x) dx =
1

2n

∫ a

0

2nx√
nx2 + 1

dx =

√
nx2 + 1

n

∣∣∣∣a
0

=

√
na2 + 1− 1

n
.

�
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Quadratum magia
Eddie Kent
Whenever talk turns to magic squares most naturally one thinks of Albrecht
Dürer and his engraving Melancholia I. This shows a 4 × 4 magic square
with magic constant 34 – the number that all the columns, rows, diagonals,
corner 4s and many more groups add up to. In addition the second and
third squares of the last row contain the numbers 15 and 14, giving the date
of the engraving. Incidentally this is the only Dürer work that contains
its own title: Melencolia·I; it has been the subject of numerous works of
interpretation, including two volumes by Peter–Klaus Schuster (Melencolia
I—Dürers Denkbild, Gebr. Mann 1991).

The subject of magic squares has itself been enthusiastically attacked
over the years: Wikipedia gives a bewildering array of examples. My own
small contribution to the genre came about through reading a puzzle in
Mathematical Spectrum when I sent in a curiosity devised by a pensioned
Moravian officer named Wenzclides. This is an 8×8 array giving a knight’s-
move magic square from 1 to 64 in which each row and column adds to 260.
But that’s all. No diagonals, no nothing.

47 10 23 64 49 2 59 6

22 63 48 9 60 5 50 3

11 46 61 24 1 52 7 58

62 21 12 45 8 57 4 51

19 36 25 40 13 44 53 30

26 39 20 33 56 29 14 43

35 18 37 28 41 16 31 54

38 27 34 17 32 55 42 15

At the time I submitted this it had not been beaten, and in 2003 it was
shown (by Stertenbrink, Meyrignac and Mackay) that it never will be; and
I have no idea who Wenzclides was. I found the array in a very old and
fairly useless mathematics book which has long since disappeared.

In 1770 Euler devised a magic square of squares with a magic constant
of 8515: rows, columns, diagonals and many symmetric sets of four cells. I
believe this last makes it ‘panmagic’.
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4624 841 1681 1369

289 961 6241 1024

3481 784 529 3721

121 5929 64 2401

The square roots of these numbers are not magic and there is no reason why
they should be, for any squares. But over time this construction has led to
many similar being devised, not only 4×4 but also, in particular by C. Boyer
(see Math. Intel. 27, 2005), 5× 5, 6× 6 and 7× 7 magic squares of squares.
Boyer published his results in reply to Martin Gardner, who in an update
to his column in Scientific American offered a prize of $100 to anyone who
can find a 3× 3 example with nine distinct square numbers. This prize has
never been claimed and I doubt if the 1996 offer still exists but the challenge
is out there. In 1998 Gardner wrote ‘So far no one has come forward with
a “square of squares” – but no one has proved its impossibility either. If
it exists, its numbers would be huge, perhaps beyond the reach of today’s
fastest computers.’ Well, maybe.

Thus in the interests of pure stupidity and time wasting and because I
am virtually retired from M500, after decades of fun, and am in search of
immortality I am prepared to offer one hundred American dollars to any
M500 member who comes up with a 3× 3 magic square of 9 distinct square
numbers arranged so that the rows, columns, and both diagonals each add
up to the same number. Making it pandiagonal will not increase the value of
the prize. Whether my daughter will honour this pledge after my imminent
death I’ve no idea. You’ll have to ask her.

Problem 265.2 – Seven squares
Find integers n, p, and q such that the seven numbers

n2, n2 + p, n2 − p, n2 + q, n2 − q, n2 + p+ q and n2 − p− q

are distinct integer squares. Unfortunately there is no prize—unless you
can augment the list with two more, n2 + p − q and n2 − p + q, and then
arrange them into the much sought after magic square.
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Problem 265.3 – Isosceles triangle
Dick Boardman
Triangle ABC has an interior point P such that ∠PAB = 24◦, ∠PAC =
18◦, ∠PCA = 57◦ and ∠PBA = 27◦.

In number 136 of Nick’s Mathematical Puzzles, which you can find at
http://www.qbyte.org/puzzles/, you are asked to prove that the triangle is
isosceles. When you have done that, perhaps by clicking the ‘Solution’
button, we then want you to devise a way of finding similar sets of angles
which are whole numbers of degrees.

AB

C

24 °

18 °

27 °

57 °

P

Problem 265.4 – Stopping time
A casino operates a simple mechanism for increasing its revenue at your
expense. You pay £10 and choose an integer, x. The casino chooses a
number y, 1 ≤ y ≤ 10, uniformly at random and proceeds as follows.

Step 1. If x ≡ y (mod 10), stop.

Step 2. Otherwise replace x by 2x + e, where e = 0 or 1, chosen at
random with equal probability (by tossing a coin, for example), pay you £1
and go to Step 1.

As you can imagine, the prospect of almost infinite wealth makes the game
attractive. Show that the casino has the advantage, nevertheless, and that
your expected loss is the same whatever number x you started with.

The problem was inspired by a lecture on Kemeny’s constant by Robin
Whitty, based on entry 236 in his Theorem of the Day, which you can look
up at http://www.theoremoftheday.org/.



M500 265 Page 21

Problem 265.5 – Telephone box
Ralph Hancock
The new red telephone boxes used to have flat top panels, but the design
was criticised for being boring and they were fitted with domed tops in the
style of the old cast-iron ones designed by Giles Gilbert Scott, and based
on Sir John Soane’s self-designed mausoleum in St Pancras Old Church:
http://goo.gl/OOd8jk. The shape of the new roof is, to put it simply, what
you get when you apply a square cookie cutter to a sphere.

The new top for the boxes replaces a square flat panel measuring x by
x, and the corners of the dome are at the places where the corners of the
original square were. It is impossible to measure the diameter of the curved
surface directly, but you can measure the height of the four identical sectors
of circles around the edge, and they are y high.

I have to paint the new panels for all these boxes red. It was easy to
work out how much paint I needed for the old flat panels whose area was
simply x2. But what is the area of the new panels, including the four sides?

Problem 265.6 – Triples
Tony Forbes
Show that the number of integer triples (a, b, c), where 1 ≤ a ≤ b ≤ c and
a+ b+ c = n, is bn2/12 + 1/2c; i.e. the nearest integer to n2/12.

Problem 265.7 – Population control
In an overpopulated country the law restricts a woman to one child if it is
a boy and at most two if her first child is a girl. How is the population
affected?

Student: “What is x?”

Teacher: “42.”

Another student: “But yesterday you said it was 23.”
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Front cover Two ellipses, x2 − 2xy+ 3y2 − y/2− 1 and 3x2 + y2 − 3/16,
and some triangles with vertices on one ellipse and sides tangent to the
other. See http://www.theoremoftheday.org/Theorems.html, number 229, or
http://www.maths.qmul.ac.uk/∼whitty/LSBU/MathsStudyGroup/ADF
PonceletsPorism.pdf.


