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Complex Fibonacci
Martin Hansen
One of the highlights of an undergraduate mathematician’s first year at
university must surely be the revelation that many functions are amenable
to being approximated by polynomials. In particular, there are the follow-
ing three marvellous results, sometimes referred to as ‘Taylor Polynomials’
(about x = 0) or ‘Maclaurin Series’ or ‘Power Series’.

Power Series Expansions (centred on x = 0)

ex = 1 + x+
x2

2!
+ · · ·+ xr

r!
+ . . . valid for all x

sinx = x− x3

3!
+
x5

5!
− · · ·+ (−1)r

x2r+1

(2r + 1)!
+ . . . valid for all x

cosx = 1− x2

2!
+
x4

4!
− · · ·+ (−1)r

x2r

(2r)!
+ . . . valid for all x

Pleasingly, any one of these results can be visualised by taking successive
partial sums of the series and plotting graphs. Below are shown approxima-
tions of the sine function with y = x, y = x−x3/3! and y = x−x3/3!+x5/5!.
As the degree of the approximating polynomial is increased, it better follows
the sine curve over a greater interval, centred on the origin.
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A key fact about power series is that any two (with the same centre)
can be added, multiplied or divided in the same way as polynomials. This
suggests that the exponential series can be manipulated in the following
adventurous manner when the index is a complex number, z = a + ib,
a, b ∈ R, i2 = −1:

ez = ea+ib

= eaeib

= ea
(

1 + ib+
(ib)2

2!
+

(ib)3

3!
+

(ib)4

4!
+

(ib)5

5!
+

(ib)6

6!
+ . . .

)
= ea

(
1 + ib− b2

2!
− ib3

3!
+
b4

4!
+
ib5

5!
− b6

6!
+ . . .

)
= ea

((
1− b2

2!
+
b4

4!
− b6

6!
+ . . .

)
+ i

(
b− b3

3!
+
b5

5!
− . . .

))
= ea(cos b+ i sin b).

The real exponential function is thus extended into the world of complex
numbers via the beautiful result known as Euler’s Relation.

Euler’s Relation

eib = cos b+ i sin b.

When b = π Euler’s Relation yields eπi = −1, usually written as

eπi + 1 = 0

and often referred to as the most beautiful equation in all of mathematics.
Of course, when b = 0 the complex exponential function is identical to the
real exponential function. In this case, a real function has been extended
into the complex realm by a simple multiplication of cos b + i sin b. It is
natural to wonder if there are other functions extendable in this sort of
way.

A drawback for beginners in trying to appreciate what has been achieved
with the extension of the exponential from the real to the complex is that
the complex exponential function is tricky to visualise. Its domain is two
dimensional as is its codomain. Visualising four dimensions simultaneously
does not come naturally to the average person. In this article I wanted to
look at a similar extension to a well-known function but one which yields
results more easily visualised.
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The function I have in mind is that associated with the Fibonacci num-
bers. These are usually defined by means of the simple recursive formula,

Fn+2 = Fn+1 + Fn, n ∈ Z, n ≥ 0,

along with two initial terms F0 = 0 and F1 = 1. It gives rise to the ‘world
famous’ sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

This has so many astounding mathematical properties that a scholarly jour-
nal, The Fibonacci Quarterly, is devoted to ongoing research of this and
related sequences such as those of Lucas, Jacobsthal, and Pell.

The domain can be extended readily enough to include the negative
integers. The resulting ‘extended leftward’ sequence is

. . . ,−21, 13,−8, 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . .

Part of the fascination of the Fibonacci sequence stems from the fact that
it has a closed form formula for term n that, although we are working with
the integers, contains fractions and square roots ‘all over the place’. Yet it
will yield an integer output no matter what integer input is assigned to n.

The Binet Formula for the Fibonacci Sequence (Version 1)

Fn =
1√
5

((
1 +
√

5

2

)n
−

(
1−
√

5

2

)n)
, n ∈ Z

Having extended the domain of the Fibonacci sequence to include the
negative integers, the Binet formula provides an opportunity to go further
and extend it to the reals. Of course, 1 −

√
5 is negative, and so for some

values of n its powers will be complex numbers. When I reached for my
calculator (a Casio Classwiz fx-991EX in complex number mode) it gave,
for n = 0.5,

F0.5 =
1√
5

√1 +
√

5

2
−

√
1−
√

5

2


= 0.569− 0.352 i.
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However, it could not cope with the same calculation presented in the form

F0.5 =
1√
5

(1 +
√

5

2

)0.5

−

(
1−
√

5

2

)0.5
 .

In retrospect, this was a blessing; rather than reaching for more powerful
software a deeper understanding was called for.

The key idea is to find a way of separating the real part of the calculation
from the imaginary part and an ingenious way to do this is to be found in
a paper from 1968 in The Fibonacci Quarterly by Alan Scott, [1].

To understand Scott’s result we first need to look more carefully at eiπ =
−1. Values of the function f(b) = eib are best understood by visualising
them as being on the unit circle in the complex plane. The variable b then
has the interpretation of being the angle (in radians) of (anticlockwise)
rotation, where the positive real axis corresponds to an angle of 0. The
diagram on page 4 shows a few points plotted for b between −π and π
radians. The crucial point being made by this diagram is that the result
can be equally well written as e−iπ = −1. In fact, given any point on the
unit circle, a rotation of 2πk (about the centre) for any integer k gives the
same point.

In general, we have that ei(2k+1)π = −1, k ∈ Z.

The digression over, we can pick up the main thread of the article.
Observe that(

1−
√

5

2

)n
=

(
2

1−
√

5

)−n
= (−1)−n

(
1 +
√

5

2

)−n
.

From this observation we obtain

The Binet Formula for the Fibonacci Sequence (Version 2)

Fn =
1√
5

(1 +
√

5

2

)n
− (−1)−n

(
1 +
√

5

2

)−n
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Now, we could recall here that eiπ = −1 (so beautiful!) but, to match
the result my calculator produced earlier, let’s use e−iπ = −1 instead:

(−1)−n =
(
e−π

)−n
= eiπn = cos(πn) + i sin(πn).

Thus is obtained a third version of the Binet formula for the Fibonacci
numbers.

The Binet Formula for the Fibonacci Sequence (Version 3)

ReFn =
1√
5

(1 +
√

5

2

)n
− cos(πn)

(
1 +
√

5

2

)−n
ImFn = − 1√

5

sin(πn)

(
1 +
√

5

2

)−n
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These can be interpreted as parametric equations where x is the real compo-
nent and y the imaginary, and plotted as a smooth continuous curve where
n is considered to be a variable over R.

Such a plot for non-negative real n is presented below. The diagram is
of the two dimensional output from the Fibonacci function with one dimen-
sional real number domain and the ease with which it can be understood
is aided considerably by knowing the integer sequence from which it was
derived. Each time the curve crosses the real number axis as we move along
the curve, the domain has integer value incremented by 1. So, three dimen-
sions can be easily visualised in spite of having only the two dimensional
codomain plot to study.

The loop from n = 1 to n = 2 is an attractive feature corresponding
to F1 = F2 = 1 and, indeed, it can be viewed as a part of the interesting
transition between the alternating sign of the integer outputs when n is a
negative integer and the all positive integer outputs when n is a positive
integer. The plot for the non-positive real n is given on the next page.

The earliest plots of this Fibonacci curve that I know of occurred in
1974 [2]. For any reader wishing to investigate the curve further, many
clever mathematical results are to be found in a 1988 paper [3].
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Problem 312.1 – Product
Tony Forbes
Show that

PN (x) =

N∏
i=1

4i+ x

4i+ 1

4i+ 3

4i+ 2
, − 1 < x < 1,

converges to something non-zero as N →∞ if and only if x = 0.
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A trigonometric series

David Sixsmith

1 The problem

In M500 Problem 310.1 we were are asked to show that

∞∑
n=1

sinn

n
=

∞∑
n=1

sin2 n

n2
=

π − 1

2
.

By taking a quite general approach, we will succeed in proving both these
equalities. We will also prove many other equalities previously calculated
by Mathematica, as well as a number of other well-known series results.

2 A solution

To solve a set of slightly more general problems, define, for p ∈ N,

sp(x) =

∞∑
n=1

sinp nx

np
.

So we are asked in the problem to calculate both s1(1) and s2(1). To do
this we will develop a formula for s1. It is useful to note first that

log(1− z) = −
∞∑
n=1

z

n
, for {z ∈ C : |z| ≤ 1 and z 6= 1}. (1)

It is also helpful to recall that

arctan(tanx) = x− π
⌊
x

π
+

1

2

⌋
, (2)

where bxc denotes the floor function.

Now, by de Moivre’s theorem, by (1), by (2), and using the fact that

byc = − b1− yc,

we obtain
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s1(x) = Im

( ∞∑
n=1

(exp ix)n

n

)
= − Im(log(1− exp(ix)))

= − arg(1− exp(ix))

= arctan

(
sinx

1− cosx

)
= arctan

(
cot
(x

2

))
= arctan

(
tan

(
π − x

2

))
=

π − x
2

+ π
⌊ x

2π

⌋
whenever x is not an integer multiple of 2π. In particular,

s1(1) =
π − 1

2
,

as required. We also get a proof of the well-known result that

∞∑
n=1

(−1)n+1 1

(2n− 1)
= s1(π/2) =

π

4
.

We also have that

ds2(x)

dx
=

∞∑
n=1

sin 2nx

n
= s1(2x) =

π

2
− x.

Integration, and the fact that s2(0) = 0, gives that

s2(x) =
x(π − x)

2
when x ∈ (0, π).

Hence

s2(1) =
π − 1

2
,

as required. It is also interesting to note the well known result that

∞∑
n=1

1

(2n− 1)2
= s2(π/2) =

π2

8
.
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3 The third to sixth series

We can in fact continue this approach. Using the fact that

sin3 x =
3 sinx− sin 3x

4
,

we obtain by differentiating twice that

d2s3

dx2
=

9s1(3x)− 3s1(x)

4
=

3π

4
− 3x.

Since s3 and its derivative are both zero at x = 0, we obtain

s3(x) =
3π

8
x2 − x3

2
,

and so

s3(1) =
3π − 4

8
.

Using this technique we find that

s4(x) =
π

3
x3 − x4

2
, and so s4(1) =

π

3
− 1

2
,

s5(x) =
115π

384
x4 − x5

2
, and so s5(1) =

115π

384
− 1

2
,

and finally (and computer calculations are a boon here)

s6(x) =
11π

40
x5 − x6

2
, and so s6(1) =

11π

40
− 1

2
.

4 The seventh term and onwards

Note that all the terms s1(1), . . . , s6(1) are of the form pπ− 1/2, where p is
rational. However, as was noted in M5001, we have

s7(1) =
1

46080
(− 23040 + 129423π − 201684π2 + 144060π3

− 54880π4 + 11760π5 − 1344π6 + 64π7).

This change in the fundamental nature of the terms when we transition
from 6 to 7 was (rightly) described as ‘mystifying’.

1Tony Forbes, A trigonometric series, M500 310, 12–13
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In fact we can see that this change follows from our formula for s1(x),
which is easiest to integrate when x ∈ (0, 2π). Since 6 < 2π < 7, this implies
that all calculations up to s6(1) use this simplest form of s1, but from s7

onwards we need to integrate a more complicated expression.

The calculations are complicated, and best left to Mathematica. I
will only outline the start of the calculations. First we write

sin7 x =
1

64
(35 sinx− 21 sin 3x+ 7 sin 5x− sin 7x).

Differentiating six times gives

d6(sin7 x)

dx6
= − 7

64
(5 sinx− 2187 sin 3x+ 15635 sin 5x− 16807 sin 7x),

and so

d6s7

dx6
= − 7

64
(5s1(x)− 2187s1(3x) + 15635s1(5x)− 16807s1(7x)).

The difficulty comes in integrating the final term. For values of x close to 7
(in particular when 2π < x < 4π, we have that∫ x

0

s1(t) dt =

∫ x

2π

3π − t
2

dt =
6πx− x2 − 8π2

4
.

It should now be clear where the powers of π come from – the six necessary
repeated integrations of s1.

Note that between 6 and 7, x = 7 is the only point where this transition
happens. For example, when calculating the integral of s1(x) for values
near 13 (note that 12 < 4π < 13) we continue to get a polynomial in π of
degree 2. It follows (with a little thought!) that sk(1) is a polynomial in π
of degree 1 when 1 ≤ k ≤ 6, and of degree k otherwise.

5 Problem

Prove that the constant term (i.e. the term independent of π) in sk(1) is
always −1/2.

6 The series with cosine

An obvious extension is to consider the related series, for p ∈ N,

cp(x) =

∞∑
n=1

cosp nx

np
.
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We will find a formula for c1. By de Moivre’s theorem again, we obtain

c1(x) = Re

( ∞∑
n=1

(exp ix)n

n

)
= − Re(log(1− exp(ix)))

= − log |1− exp(ix)|

= − log

√
(1− cosx)2 + sin2 x

= − log |2 sin(x/2)|

whenever x is not an integer multiple of 2π. In particular,

∞∑
n=1

cosn

n
= c1(1) = − log |2 sin(1/2)|.

We also have that

dc2(x)

dx
= −

∞∑
n=1

sin 2nx

n
= s1(2x) = − π

2
+ x.

Integration, and the fact that

c2(0) =

∞∑
n=1

1

n2
=

π2

6
,

gives that

c2(x) =
x(x− π)

2
+
π2

6
, for 0 ≤ x < π.

Thus
∞∑
n=1

cos2 n

n2
= c2(1) =

1− π
2

+
π2

6
.

This is to be expected in fact, as

c2(x) + s2(x) =

∞∑
n=1

1

n2
=

π2

6
.
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7 A new problem

It seems natural to ask if series such as

tp =

∞∑
n=1

tann

np

can converge, at least for large enough values of p. Mathematica (via
Wolfram Alpha) thinks t1 and even t10 are divergent. It also thinks

∞∑
n=1

tann

en

is divergent, even though it gives the sum of the first 100, 000 terms as just
over 0.26255. It claims that

∞∑
n=1

tann

een

is convergent.

PROBLEM: Prove convergence (or otherwise) of any of these series.

8 Acknowledgement

I am very grateful to Tony Forbes for helpful comments, suggestions, and
use of Mathematica to check and suggest formulae.

Problem 312.2 – Isosceles triangles

Take a triangle with vertices
ABC, and denote by D, E, F
the intersections on the opposite
sides of the bisectors of the an-
gles A, B, C, respectively.

If 4ABC is isosceles, then
clearly so is 4DEF . Either
show that the converse is true,
or find a counter-example.

A

B C
D

EF
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Folding a square
Tommy Moorhouse
This investigation was inspired by a puzzle concerning the folding of a strip
of paper, although I’m not sure who thought it up. Take a strip of paper,
lay it on a table and mark the left edge. Take the other end of the strip and
fold in half, right over left, so that the marked edge is lowermost. When you
unfold the strip there is a single downward-pointing fold. Fold in half as
before, then take the folded edge and fold the strip in half again. Unfolding
again we get the following pattern of folds (Figure 1):

Figure 1: Paper strip after second turn.

or, symbolically,
↓ ↓ ↑ .

The idea is to fold repeatedly, right over left, and see if you can find a rule
for the pattern of folds after n turns. You could try this if you’ve not seen
it before.

I wondered if it would make sense to do a similar thing with a square
sheet of paper (or some easily folded material). Take the sheet and mark
the top left corner. Fold in half, bottom over top, then fold the rectangle
in half, right over left.

Call this ‘Folding 1’. When the paper is unfolded (see Figure 2) the
pattern of folds, going clockwise from the marked corner, is

↓ ↓ ↑ ↓ .

Re-fold the square and repeat the folding (top/bottom then right/left) with
this smaller square. This is ‘Folding 2’. Now there are more folds and
in order to get a one-dimensional sequence of folds we have to decide on a
path over the paper that crosses (or at least visits) every fold. This is where
graphs come in. We will associate a graph φk with Folding k.

Starting from the marked corner draw a vertex for each fold. Connect
together those vertices that represent folds on the edge of the same square.
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Figure 2: Paper after Folding 1

Figure 3: The graph φ2.

The case k = 2 is shown in Figure 3.
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Figure 4: Two Hamilton walks in φ2.

Investigation What is the structure of the graph φk? For example, how
many edges and vertices are there and how are they connected? In par-
ticular, is there a Hamilton walk, i.e. a path starting from any vertex and
following edges through every other vertex exactly once, for every φk? An
open walk (starting and ending at different vertices) is what we need. Fig-
ure 4 shows two Hamilton walks in φ2. The colouring of the vertices is
simply intended to indicate some of the structure of the graph. Both walks
are perfectly good, but I think that the right-hand walk can more easily be
extended to higher φk. I could be wrong!

If there is a Hamilton walk in every φk then it may make sense to
study the one-dimensional sequence of folds given by Folding k, i.e. the 2-d
extension of the 1-d folded strip problem. I believe (but have not proved)
that the choice of Hamilton walk in each graph can be made consistently,
and I have drawn a walk in φ3 illustrating a walk w3 that may hint at a
general approach. Can you prove this, or perhaps find a counterexample?

One line of investigation is whether it is possible to find a rule for the
pattern of folds for Folding k defined above, given a well defined sequence
of Hamilton walks (w1 ∈ φ1, w2 ∈ φ2, · · · , wk ∈ φk). Each wn must contain
all the vertices of wn−1 – in some sense ‘in the same order’ – with additional
vertices inserted. I have in mind an inclusion map from the set of vertices
of φk to a subset of those of φk+1, but the details need to be worked out.
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Figure 5: Hamiltonian walk in φ3.

Looking at the graphs above it seems that the φk are included in a
sequence of graphs that can be drawn with n vertices on the first, third,
fifth etc. rows, with n + 1 vertices on the second, fourth etc. rows and
connected ‘in the same way’ as φ2. Is this in fact the case, and do the more
general graphs arise from foldings of a square?

Problem 312.3 – Area and perimeter
Jeremy Humphries
What’s the area of the shape? What about the perimeter?

1

a

b
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Solution 306.6 – Pistachio nuts
Pistachio nuts can be an important component of a well-
balanced diet and have featured significantly in past issues of
this magazine as Problems 275.6, 278.1, 290.5 and 283.6 as well
as in some cases their solutions. Just when I [TF] thought the
subject was dead I discovered an interesting simple variation
that I had overlooked. There is a bowl containing n pistachio
nuts. How may times would you expect to perform the following
procedure in order to consume all of the edible material in the
bowl?

(i) You select uniformly at random one object from the bowl. It might
be a whole pistachio nut in its shell, or just a pistachio nut kernel
without its shell, or just half of a pistachio nut shell.

(ii) If it is a half-shell, you return it to the bowl.
(iii) If it is a naked pistachio nut kernel, you consume it.
(iv) If it is a pistachio nut in its shell, you split it into its three components,

kernel and two half-shells, which you return to the bowl.

Ted Gore
Let n be the number of whole nuts at the start of the process. A computer
simulation was run for some chosen values of n and the average number of
picks is shown in the table on page 21.

I approached this problem by considering that the process for a given n
is made up of a number of batches. A batch consists of a number of picks
that result in a half-shell being selected until it is terminated by selection
of either a whole nut or a kernel. There will always be 2n batches when
there are n nuts to start with; one batch for each whole nut and one for
each kernel.

The simulation keeps a count of the total number of picks for each n.
This appears in the table as P (sim). It also counts the number of kernels
and half-shells in the bowl at the end of each batch.

For batch i, let W (i) be the number of whole nuts in the bowl at the
end of the batch; let K(i) be the number of kernels and let H(i) be the
number of half-shells. At the start of batch i the probability of picking a
whole nut is

W (i− 1)

W (i− 1) +H(i− 1) +K(i− 1)
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and the probability of a kernel is

K(i− 1)

W (i− 1) +H(i− 1) +K(i− 1)
.

The probability of picking either a nut or a kernel is

W (i− 1) +K(i− 1)

W (i− 1) +H(i− 1) +K(i− 1)

and the expected number of picks required to get that result is

W (i− 1) +H(i− 1) +K(i− 1)

W (i− 1) +K(i− 1)

= 1 +
H(i− 1)

W (i− 1) +K(i− 1)

= 1 +
H(i− 1)

n−H(i− 1)/2 +K(i− 1)

since W (i − 1) = n − H(i − 1)/2. If P (n) is the total number of picks
required for a given n, then

P (n) =

2n∑
i=1

1 +
H(i− 1)

n−H(i− 1)/2 +K(i− 1)
.

The functions H and K can be mapped to canonical functions h and k with
domain [0, 1] and image [0, 1] by dividing all i, K(i) and H(i) by 2n.

The number of kernels in the bowl increases from 0 to a maximum and
then reduces to 0 when the last one is eaten. Let imax be the batch that
has the maximum number of kernels and let

xmax =
imax

2n
.

The values of h and k at xmax are hmax and kmax.

Let x =
i− 1

2n
, let H(i− 1) = 2nh(x) and let K(i− 1) = 2nk(x). This

will give us

P (n) =

2n∑
i=1

1 +
2nh(x)

n− 2nh(x)/2 + 2nk(x)
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=

2n∑
i=1

1 +
h(x)

0.5− h(x)/2 + k(x)
,

so that
P (n)

2n
=

2n∑
i=1

1

2n
+

h(x)

n− nh(x) + 2nk(x)
.

It would be useful to have functions that tell us the values of h and k for
any batch for any n. The graphs of h and k are similar for n ≥ 10. The one
shown is for n = 100.

By experimentation it seems that reasonable functions are

h(x) =
a

1 + bex
+ c,

k(x) = px+ qx2 + rx3.

The values in the table suggest that it also seems reasonable to work with
average values for xmax, kmax and hmax.

We have three simultaneous equations for each of h and k. Solving the
two sets of equations gives the values of a, b, c, p, q, r. A description of the
values obtained is detailed in an appendix below the table.

The results for P/(2n) using these values appear in the table as
P

2n
(calc).
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This leads to a further result. Using Python’s curve fitting software
to plot P (n)/(2n)(calc) against ln(n) I obtained the graph below. It sug-
gests that P (n)/(2n) ≈ 2.067 + 1.1312 ln(n) and these results appear in the
column marked P/(2n)(final).

n P (sim)
P

2n
(sim) xmax kmax hmax

P

2n
(calc)

P

2n
(final)

10 92.112 4.6506 0.45 0.2011 0.6511 4.6609 5.0135
50 652.793 6.5279 0.46 0.1866 0.6466 6.4787 6.4924
100 1468.995 7.3450 0.45 0.1866 0.6366 7.2622 7.2765
500 9091.452 9.0915 0.438 0.1839 0.6220 9.0817 9.0971
1000 19,703.631 9.8518 0.4415 0.1841 0.6256 9.9865 9.8812
5000 115,717.121 11.5717 0.4521 0.1841 0.6362 11.6852 11.7018
10000 250,242.633 12.5121 0.4499 0.1838 0.6337 12.4690 12.4859
50000 1,459,062.264 14.5906 0.4492 0.1839 0.6331 14.2888 14.3065
mean 0.4488 0.1867 0.6356

Appendix: Solving the equations for h and k

Let Θ, Φ, Ψ be the averages of xmax, hmax, kmax. For h, let L = e1, M = eΘ,
S = e1/(2n). We have three equations,

h(1/(2n)) = 1/n =
a

1 + bS
+ c,

h(Θ) = Φ =
a

1 + bM
+ c,



Page 22 M500 312

h(1) = 1 =
a

1 + bL
.

Solving these we get

b =
(n− 1)(M − L)− n(1− Φ)(S − L)

n(1− Φ)(S − L)M − (n− 1)(M − L)S
,

a =
(n− 1)(1 + bS)(1 + bL)

nb(S − L)
,

c = Φ− a

1 + bM
.

For n = 100, (a, b, c) = (2.8826,−3.0697, 1.3925).

For k, let L = 1, M = Θ, S = 1/(2n). We have three equations

k(1/(2n)) = 1/(2n) = pS + qS2 + rS3,

k(Θ) = Ψ = pM + qM2 + rM3,

k(1) = 0 = pH + qH2 + rH3.

Solving these we get

q =
(2n)2

1− (2n)2
,

p =
ΨL2

M(L2 −M2)
− qLM

(M + L)
,

r =
Ψ

M(M2 − L2)
− q

(M + L)
.

For n = 100, (p, q, r) = (0.8307,−1.000, 0.1693).

Problem 312.4 – Counting solutions
Tony Forbes
(i) Let q be a prime. Show that the number of solutions (x, y), 0 ≤ x, y < q
of x2 + y2 + 1 ≡ 0 (mod q) plus the number of solutions y, 0 ≤ y < q of
1 + y2 ≡ 0 (mod q) is q + 1.

(ii) Let q be a composite prime power, and assume in what follows that
addition and multiplication are done in the finite field GF(q). Show that
the number of solutions (x, y), x, y ∈ GF(q) of x2 + y2 + 1 = 0 plus the
number of solutions y, y ∈ GF(q) of 1 + y2 = 0 is q + 1.
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Solution 310.1 – A trigonometric series
Show that

∞∑
n=1

sinn

n
=

∞∑
n=1

sin2 n

n2
=

π − 1

2
.

Henry Ricardo
Using Euler’s formula, we write (eix)n = cosnx + i sinnx and (e−ix)n =
cosnx− i sinnx, so that sinnx =

(
(eix)n − (e−ix)n

)
/(2i). Then we have

S =

∞∑
n=1

sinnx

n
=

1

2i

( ∞∑
n=1

(eix)n

n
−

∞∑
n=1

(e−ix)n

n

)

=
1

2i
log

1− e−ix

1− eix
(using − log(1− z) =

∞∑
n=1

zn/n, |z| ≤ 1, z 6= 1)

=
1

2i
log

1− cosx+ i sinx

1− cosx− i sinx

=
1

2i
log

1 + iu

1− iu
, where u =

sinx

1− cosx
.

Since

log
1 + iu

1− iu
= 2 i tan−1 u,

we conclude that

S = tan−1 sinx

1− cosx
=

π − x
2

, 0 < x < 2π. (1)

Setting x = 1 completes the proof of this part of the problem.

Now integrating both sides of formula (1) with respect to x from 0 to t,
we get

∞∑
n=1

1− cosnt

n2
=

πt

2
− t2

4
for t ∈ (0, 2π).

Then
∞∑
n=1

sin2 nt

n2
=

1

2

∞∑
n=1

1− cos 2nt

n2
=

πt

2
− t2

2
.

Setting t = x = 1 yields the desired result.
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Solution 306.8 – Floor, ceiling and square root
If n is a positive integer that is not an integer square, show that⌈

n

b
√
nc

⌉
− b
√
nc =

3

2
− 1

2

(
sign sin(2π

√
n)
)
.

Ted Gore
Let k2 < n < (k + 1)2 where k is an integer. There are 2k possible values
for n. For all these, b

√
nc = k. The table shows results for k = 3.

r (row) n
√
n = k + ε n/k dn/ke dn/ke − k sin(2πε)

1 10 3.1623 10/3 4 1 0.8520
2 11 3.3166 11/3 4 1 0.9137
3 12 3.4641 4 4 1 0.2237
4 13 3.6056 13/3 5 2 −0.6159
5 14 3.7417 14/3 5 2 −0.9986
6 15 3.8730 5 5 2 −0.7159

Now, n/k = (k2 + r)/k and this will only be an integer when r is a multiple
of k.

For row k, n/k = k+ 1 and this is the ceiling of n/k for the first k rows.
Likewise, the value of n/k in row 2k is the ceiling of n/k for the last k rows
and this will always be k + 2. The value of dn/ke − k is therefore 1 for the
first k rows and 2 for the last k rows.

Let
√
n = k+ε. When dn/ke−k = 1, ε is less than 0.5. For dn/ke−k =

2, ε is greater than 0.5.

For the proof, we only need to consider rows k and k + 1. For row k,
we have n = k2 + k = (k + 0.5 + w)2, where |w| ∈ (0, 0.5). Hence

w =
√
k2 + k − (k + 0.5) =

√
k2 + k −

√
k2 + k + 0.25

so that w < 0 and ε < 0.5.

For k = 3, we have w = −0.0359 and ε = 0.4641 (in agreement with
the table). For row k + 1, we have n = k2 + k + 1 = (k + 0.5 + x)2, where
|x| ∈ (0, 0.5). Thus

x =
√
k2 + k + 1− (k + 0.5) =

√
k2 + k + 1−

√
k2 + k + 0.25

so that x > 0 and ε > 0.5.
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For k = 3, we have x = 0.1056 and ε = 0.6056 (in agreement with the
table). Now

sin(2π(k + 0.5)) = sin(2kπ + π) = sin(π) = 0.

Similarly,
sin(2π

√
n) = sin(2π(k + ε)) = sin(2πε).

For ε < 0.5, this is positive since 2πε is less than π. For ε > 0.5 it is
negative.

Taking all this together we have⌈
n

b
√
nc

⌉
−
⌊√

n
⌋

=
3

2
− 1

2

(
sign sin(2π

√
n)
)
.

Problem 312.5 – Gas cloud
A spherical cloud of hydrogen has radius r, temperature T and uniform
density ρ atoms per cubic metre. How big must r be for the cloud to begin
collapsing under gravity?

Problem 312.6 – 53 bricks
You cannot fit 54 1× 1× 4 bricks into a 6× 6× 6 box. If you can devise a
simple proof, we would like to see it. What about 53 bricks?

Problem 312.7 – Service
If you are a professional tennis player, most likely you employ two types
of service, F and S, say, where F has greater probabilities than S of (i)
getting declared a fault by the line judges or the umpire, and (ii) winning
the point whenever (i) does not happen.

(1) Explain why it is never a good idea to do S as your first service and
F as your second.

(2) Completely solve the tennis game initiation problem. Which should
you do, FF , FS, SF or SS? (I [TF] suspect the problem has already
been done to death in the high-school mathematical and how-to-play-tennis
literature. However, there is no harm airing it in M500 for the benefit of
wider readership. Contrary to what you might see on television in July, the
answer is not necessarily FS.)
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