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Desargues’s theorem
Tony Forbes
As I expect you remember from your high-school geometry class, Desar-
gues’s theorem says that in the diagram F , G and H are collinear. There
are (at least) two ways to prove it.

F
G

H

A

A'

B

B'

C
C'

O

First, the clever method, which you will usually find in books on projec-
tive geometry such as, for example, Marshall Hall, Projective Planes, Amer.
Math. Soc., 1943.

Imbed the diagram in a space of dimension 3. Pivoting OC ′ on O and
whilst maintaining the straightness of all of the black lines, lift C ′ a little
bit, ε say, into the third dimension so that the two yellow (grey) triangles
are no longer coplanar. When this is done there will be a perspectivity
situation. If you look at the triangles from position O, then 4ABC will
exactly obscure 4A′B′C ′.

Clearly, A, A′, B and B′ are coplanar. Therefore lines AB and A′B′

have a point in common, F in the diagram. Unfortunately there will be a
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problem whenever AB is parallel to A′B′. There are several ways to get
around this difficulty: (i) pretend it doesn’t happen; (ii) work in a projective
space, so that in this case F is a legitimate point but it is at infinity; (iii)
leave the degenerate cases as exercises for the reader. For simplicity we shall
adopt (i).

Similarly B, B′, C and C ′ are coplanar; therefore lines BC and B′C ′

have a point in common, G in the diagram. Similarly C, C ′, A and A′ are
coplanar; therefore lines CA and C ′A′ have a point in common, H in the
diagram.

Moreover, F is in the plane of triangle ABC as well as the plane of
triangle A′B′C ′. So are G and H. Furthermore, the intersection of two
distinct planes is a line. This proves the theorem when the triangles are not
coplanar. Finally, we let ε tend to zero and argue by continuity that the
theorem also holds in two dimensions. �

Now for the second method. Since I could not find this an any textbook
I had to work it out for myself. It relies on computing the coordinates of
F , G and H by brute force, a rather messy procedure. Nevertheless, the
proof works entirely in the plane, which could be an advantage if a third
dimension is not readily available.

Let O = (0, 0). Since AA′ goes through O, we can write

A = (tA, a tA), A′ = (t′A, a t
′
A)

for some parameter a and variables tA and t′A. We are assuming that OA′ is
not vertical, a situation we can achieve by rotating the diagram if necessary.
Similarly, let

B = (tB , b tB), B′ = (t′B , b t
′
B), C = (tC , c tC) C ′ = (t′C , c t

′
C)

for parameters b, c and variables tB , t′B , tC , t′C . To compute the intersec-
tions F , G and H, we set up a system of six equations

A+ (B −A)uAB = A′ + (B′ −A′)u′AB , (1)

B + (C −B)uBC = B′ + (C ′ −B′)u′BC , (2)

C + (A− C)uCA = C ′ + (A′ − C ′)u′CA (3)

for the six variables

uAB , u′AB , uBC , u′BC , uCA, u′CA.
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The equations are solved in the usual manner. We write down the unique
solution and invite the reader to verify that it works.

uAB =
tAt
′
B − t′At′B

tAt′B − tBt′A
, uBC =

tBt
′
C − t′Bt′C

tBt′C − tCt′B
, uCA =

tCt
′
A − t′At′C

tCt′A − tAt′C
,

u′AB =
tAtB − tBt′A
tAt′B − tBt′A

, u′BC =
tBtC − tCt′B
tBt′C − tCt′B

, u′CA =
tAtC − tAt′C
tCt′A − tAt′C

.

Now we substitute uAB , u′AB , uBC , u′BC , uCA, u′CA into the left-hand sides
of (1), (2) and (3) to obtain these three expressions for the intersection
points in terms of a, b, c, tA, t′A, tB , t′B , tC , t′C :

F =

(
tA −

(tA − tB)(tA − t′A)t′B
tAt′B − tBt′A

,
b tBt

′
B(tA − t′A)− a tAt′A(tB − t′B)

tAt′B − tBt′A

)
,

G =

(
tB −

(tB − tC)(tB − t′B)t′C
tBt′C − tCt′B

,
c tCt

′
C(tB − t′B)− b tBt′B(tC − t′C)

tBt′C − tCt′B

)
,

H =

(
tC −

(tC − tA)(tC − t′C)t′A
tCt′A − tAt′C

,
a tAt

′
A(tC − t′C)− c tCt′C(tA − t′A)

tCt′A − tAt′C

)
.

Finally, to prove that F , G and H are collinear all we have to do (!) is show
that

G = F + (H − F ) v

has a unique solution, v. Indeed it has:

v =
(tB − t′B)(tCt

′
A − tAt′C)

(tA − t′A)(tCt′B − tBt′C)
,

which you can verify. An amazingly simple expression, I think you will agree.
Alternatively, you can compute the area of triangle FGH and confirm that
it is exactly zero. �

Of course, the most difficult part of any proof is remembering how to
draw the Desargues configuration in such a manner that all of the intersec-
tion points F , G and H are on the page. Here is a simple strategy, which
you might find useful if you ever find yourself lecturing about the subject.
Draw the origin, O, and the three lines that pass through O roughly as
shown. Choose A, A′, G and H. Then draw lines and mark points in this
order: AH, C, A′H, C ′, CG, B, C ′G, B′. Now when AB and A′B′ are
extended they meet at F , which will be on the page between G and H.
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Solution 298.1 – Vectors
Given an integer n ≥ 2, show how to construct a set of n mutually orthog-
onal linearly independent vectors of dimension n that includes the all-ones
vector. Here’s an example when n = 4:

{(1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 1,−1), (−1, 1, 1,−1)}.

Stuart Walmsley
It is recalled that for two linearly independent vectors (a, b, c, . . . ) and
(A,B,C, . . . ) the orthogonality condition is

aA+ bB + cC + . . . = 0;

that is, their scalar product is zero. A set of mutually orthogonal linearly
independent vectors relative to (1, 1, . . . ) is required. A vector (a, b, c, . . . )
which is orthogonal to (1, 1, . . . ) satisfies the condition

a+ b+ c+ . . . = 0.

One method of constructing such a set is as follows. The first vector is

(1, 1, . . . ).

In the second vector, all components are zero except the first two, which
must sum to zero. Hence the second vector is

(1,−1, 0, 0, . . . ).

In the third, all components are zero except the first three. The first two
take the value 1 to ensure orthogonality to the second vector and the third
is −2 to give zero sum and hence orthogonality to the first vector.

The procedure is repeated to give the following solution.
1 1 1 1 1 . . .
1 −1 0 0 0 . . .
1 1 −2 0 0 . . .
1 1 1 −3 0 . . .
1 1 1 1 −4 . . .

. . .

 .

It is noted that the condition for orthogonality of two vectors is independent
of the magnitudes of the two vectors. In many applications it is required
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that all the vectors have the same length: the normalising factor is different
for each of the vectors in this case. It is possible to get a solution to the
problem in which the components of the vectors are 1 or −1, as in the
example, if n is a power of 2. For n = 2,[

1 1
1 −1

]
.

If this array is taken to be a 2× 2 matrix M , a solution for n = 4 is given
by the matrix direct product M ×M :[

M M
M −M

]
;

that is 
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
If this new matrix is N , solution for n = 8 is M ×N :

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


.

Hence a solution is found when n is a power of two.

The numbers 1 and −1 are the two square roots of one. All higher
roots are complex numbers. If the components of the vector are complex,
the orthogonality condition is modified. For the vectors (a, b, c, . . . ) and
(A,B,C, . . . ), the condition may be written

aA∗ + bB∗ + cC∗ + . . . = 0

in which A∗ is the complex conjugate of A. One of the vectors in the set
continues to be (1, 1, . . . ) and the condition that any other vector in the set
satisfies the condition

a+ b+ c+ . . . = 0
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still holds. For a given n, the n distinct nth roots of 1 are

exp(2πij/n), j = 0, 1, . . . n− 1,

which will be contracted to ej the value n being understood from the con-
text.

The elements of the set {1,e1, . . . , en−1} are the roots of the polynomial

zn − 1 = 0

and hence their sum (being equal to minus the coefficient of zn−1 in the
polynomial) is zero:

1 + e1 + · · ·+ en−1 = 0.

Vectors of the required form may then be constructed as follows:

(e0, ej , e
2
j , . . . , e

n−1
j )

for j = 0 to n− 1. Here

ekj = ejk, jk (mod n).

As examples, when n = 5 we have
1 1 1 1 1
1 e1 e2 e3 e4

1 e2 e4 e1 e3

1 e3 e1 e4 e2

1 e4 e3 e2 e1

 ,
and when n = 6, 

1 1 1 1 1 1
1 e1 e2 e3 e4 e5

1 e2 e4 1 e2 e4

1 e3 1 e3 1 e3

1 e4 e2 1 e4 e2

1 e5 e4 e3 e2 e1

 .

If j is coprime to n, the vector gives one cycle of length n. In general, if
the highest common factor of n and j is f , there are f cycles of length n/f .
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Mirrors
Robin Whitty
Søstrene Grene is a Danish chain of stores selling housewares, gifts and
novelty items. At the time of writing it does not have much presence in the
UK, but has branches all over France, including Toulouse, where I took this
photograph.

Of course I spent the remainder of my time in the store (which does
not otherwise offer much to hold the attention of a mathematician) tackling
the implied exercise which, in case it is hard to decipher from the image, I
summarise as follows.

Three circular mirrors are priced according to diameter as fol-
lows: 20.8 euros for 0.5 m; 33.6 euros for 0.7 m; and 62.8 euros
for 0.9 m. Which mirror offers the best value for money in terms
of euros per square metre? What would you expect a 1m diame-
ter mirror to cost? And how might you explain the distribution
of prices suggested by the three mirrors?

Problem 303.1 – 16 sins
Show that

3∑
i=1

 sin 2ci
sin(x− ci)

3∏
j=1, j 6=i

1

sin(ci − cj)

 =
sin 2x∏3

i=1 sin(x− ci)
.
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Solution 299.1 – Adjugate
The adjugate, adjM , of a square matrix M is the matrix defined
by

[adjM ]i,j = (−1)i+j detMj̄,̄i,

where Mj̄,̄i is the matrix you get from M by deleting row j and
column i. Show that if x is a variable, A is a matrix that is
independent of x, and M = xI −A, then

d(detM)

dx
= trace (adjM) .

More generally, show that

d(detM)

dx
= trace

(
(adjM)

dM

dx

)
.

Tommy Moorhouse

The case M = xI +A

We will use component notation for matrices with the general layout Ma
b

with a labeling rows and b labelling columns. We will use the δ notation for
the unit matrix: δab = 1 if a = b, being zero otherwise. A useful expression
for the determinant of a matrix is

εa1a2···an detM = εb1b2···bnM
b1
a1M

b2
a2 · · ·M

bn
an ,

where ε is the n-index totally antisymmetric symbol with ε1 2···n = 1, and
repeated indices (one up, one down) are summed over. Setting a1 = 1, a2 =
2 and so on, and noting that in this case (i.e. M = xI +A) the derivative

dM b
a

dx
= δba,

we have

d

dx
detM = εb1b2···bn

(( d
dx
M b1

1

)
M b2

2 · · ·M bn
n

+M b1
1

( d
dx
M b2

2

)
· · ·M bn

n + · · ·
)

= εb1b2···bn

(
δb11 M

b2
2 · · ·M bn

n +M b1
1 δb22 · · ·M bn

n + · · ·
)
.
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Now we use the fact that M b
c

(
M−1

)c
a

= δba to write

d

dx
detM = εb1b2···bn

(
M b1
c

(
M−1

)c
1
M b2

2 · · ·M bn
n

+M b1
1 M b2

c

(
M−1

)c
2
MB3

3 · · ·M bn
n + · · ·

)
.

The general term in the sum is

εb1b2···bnM
b1
1 M b2

2 · · ·M
bk−1

k−1 M
bk
c

(
M−1

)c
k
M

bk+1

k+1 · · ·M
bn
n .

The matrix product must be antisymmetric in the bk so the index c can only
take the value k (otherwise there would be a symmetric term M bk

n M bn
n for

some n 6= k which would be killed by the antisymmetric ε), and the term
becomes (

M−1
)k
k
εb1b2···bnM

b1
1 M b2

2 · · ·M
bk−1

k−1 M
bk
k M

bk+1

k+1 · · ·M
bn
n .

Summing over all the terms and using the expression for detM we find

d

dx
detM = traceM−1 detM.

Using M−1 = adjM/(detM) we arrive at the result

d

dx
detM = trace(adjM).

General case

The general case is now in sight. We cannot simplify dM/dx further, but
we can insert δab s to assist:

d

dx
detM = εb1b2···bn

(( d
dx
M b1

1

)
M b2

2 · · ·M bn
n

+M b1
1

( d
dx
M b2

2

)
· · ·M bn

n + · · ·
)

= εb1b2···bn

(
δb1c

( d
dx
M c

1

)
M b2

2 · · ·M bn
n

+M b1
1 δb2c

( d
dx
M c

2

)
· · ·M bn

n + · · ·
)

= εb1b2···bn

(
M b1
d

(
M−1

)d
c

( d
dx
M c

1

)
M b2

2 · · ·M bn
n

+M b1
1 M b2

d

(
M−1

)d
c

( d
dx
M c

2

)
· · ·M bn

n + · · ·
)
.
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The general term in the sum is

εb1b2···bnM
b1
1 · · ·M

bk
d

(
M−1

)d
c

(
d

dx
M c
k

)
· · ·M bn

n

and again the antisymmetry of ε picks out the term d = k. But this is just(
M−1

)k
c

(
d

dx
M c
k

)
(no sum on k yet as we have simply isolated this term) which gives, when
we perform the sum over k, trace(M−1dM/dx) detM . Again, using

M−1 =
adjM

detM

we find
d

dx
detM = trace

(
dM

dx
adjM

)
.

Problem 303.2 – Regular graphs with girth 6
Tony Forbes
Given integer n ≥ 2, show that an (n+ 1)-regular graph with 2(n2 + n+ 1)
vertices and girth 6 must be the incidence graph of a projective plane of
order n. Or find a counter-example.

Recall that in a projective plane of order n, there is a set P of n2 +n+1
points and a set L of n2 + n+ 1 lines such that:

(i) each line is incident with n+ 1 points,

(ii) each point is incident with n+ 1 lines,

(iii) for any two distinct points, there is a unique line incident with both
points, and

(iv) for any two distinct lines, there is a unique point incident with both
lines.

Its incidence graph has vertices P ∪ L and there is an edge p ∼ ` whenever
point p is incident with line `. Clearly the graph is (n+ 1)-regular and has
2(n2 + n + 1) vertices. Moreover, it is not too difficult to show that it has
girth 6. Therefore it is sensible to pose the stated problem.
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Problem 303.3 – Bin packing
Tony Forbes
There are infinitely many empty bins, each of capacity 100. At each tick of
the clock you are presented with a random integer x in the range [1, 100].
You scan the partially filled bins that can accommodate an extra x. If there
are none, you put x into an empty bin. Otherwise you put x into a bin that
leaves the smallest unused capacity when x is added to it.

For example, you can verify that the sequence

79, 21, 68, 90, 1, 1, 33, 78, 30, 65, 21, 10, 34, 96, 68, 59, 99, 24, 56, 42

requires 11 bins of which 2 are full and 9 are partly filled as follows:

98, 92, 98, 99, 96, 92, 59, 99, 42.

Notice that the last number, 42, is in a bin by itself because there is no
non-empty bin that can accept it. If the next number is 5, you must put it
into one of the 92% filled bins.

If n is the number of trials, let b(n) be the number of bins required and
f(n) the number of full bins. What are the expected values of b(n)/n and
f(n)/n as n tends to infinity? Here is an example.

60 70 80 90 100

100

200

300

400

500

600
n = 10000, f HnL = 3919, bHnL = 5107

Distribution of partly filled bins
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Solution 299.2 – Integral
Show that∫ π/2

0

(
(sinx)2/3 + (cosx)2/3

)3

dx =
3π

2
.

Tommy Moorhouse

To tackle this type of integral we can use the beta function defined, for p
and q having positive real parts, by

B(p, q) =

∫ 1

0

yq−1(1− y)p−1dy.

Substituting cos2 t = y so that dy = −2 cos t sin t dt we see that∫ π/2

0

(cos t)2p−1(sin t)2q−1dt =
1

2
B(p, q).

Now,(
(sinx)2/3 + (cosx)2/3

)3

= 1+3((cosx)4/3(sinx)2/3+(cosx)2/3(sinx)4/3).

Since B(p, q) = B(q, p) the two trigonometric terms integrate to the same
thing and the required integral is∫ π/2

0

(
1 + 6

(
(cosx)4/3(sinx)2/3

))
dx =

π

2
+ 3B

(
7

6
,

5

6

)
.

We now use the identity

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
,

the property
mΓ(m) = Γ(m+ 1)

(so that Γ(7/6) = Γ(1/6)/6 and Γ(5/6) = −Γ(−1/6)/6), and the gamma
function relation

Γ(z)Γ(−z) =
−π

z sinπz

to deduce that the integral is
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∫ π
2

0

(
(sinx)2/3 + (cosx)2/3

)3

dx =
π

2
− 3

36

Γ(1/6)Γ(−1/6)

Γ(2)

=
π

2
+

3

36

π(
1

6
sin

π

6

) =
3π

2
.

The beta and gamma functions are discussed in many standard texts on
complex analysis.

Problem 303.4 – Tetrahedron
Tony Forbes
The base of a tetrahedron is an equilateral triangle T with side d. Its other
three sides, which meet at point P , have lengths a, b and c. Let h be the
height of P above the plane in which T lies. Show that

3d2h2 = a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2 − a4 − b4 − c4 − d4.

Observe that this remarkable expression is symmetric in a, b, c, d, and
you might find it interesting to compare it to equality (2) in Steve Moon’s
solution of Problem 266.3 – Equilateral triangle.

There is an equilateral triangle. Point P is at distance a from one
vertex and b from another vertex. What is the largest possible
distance P can be from the third vertex?

See [M500, 300, 10–12]. The situation in Problem 266.3 corresponds to the
special case h = 0. When a = b = c = d = 1 we get h =

√
2/3, as expected.

I expect you remember from high-school geometry the formula for the
height, h, above side c of a triangle with sides a, b and c:

4c2h2 = 2
(
a2b2 + a2c2 + b2c2

)
− a4 − b4 − c4.

At once this leads to an interesting question. For what kind of n-dimensional
object constructed from triangles with sides chosen from {a1, a2, . . . , an+1}
is an expression of the form

∆n

n∑
i=1

n+1∑
j=i+1

a2
i a

2
j −

n+1∑
i=1

a4
i

relevant?
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Solution 298.4 – Sum

Show that
1

1 · 2 · 3
+

1

5 · 6 · 7
+

1

9 · 10 · 11
+ . . . =

log 2

4
.

Ted Gore
Let

x =
1

1 · 2 · 3
+

1

5 · 6 · 7
+

1

9 · 10 · 11
+ · · · =

∑ 1

(2k − 1)2k(2k + 1)

for odd integers k > 0. Let

f =

∞∑
n=1

1

n(4n2 − 1)
=
∑ 2

(2m− 1)2m(2m+ 1)
+
∑ 2

(2k − 1)2k(2k + 1)

for even integers m > 1 and k as above. Let

g =

∞∑
n=1

(−1)n

n(4n2 − 1)
=
∑ 2

(2m− 1)2m(2m+ 1)
−
∑ 2

(2k − 1)2k(2k + 1)
.

According to Wikipedia, (Natural logarithm of 2), f = 2 · log(2) − 1 and
g = log(2)− 1. Now

f − g = 2
∑ 2

(2k − 1)2k(2k + 1)
= 4x = log 2,

so that x = log(2)/4.

Peter Fletcher
We can write the given sum as

S =

∞∑
n=0

1

(4n+ 1)(4n+ 2)(4n+ 3)
=

∞∑
n=0

(4n)!

(4n+ 3)!
.

Recall that the beta function B(· , ·) is defined as

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=

(x− 1)!(y − 1)!

(x+ y − 1)!
,

the expression involving factorials obviously only being valid for integer x, y.
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This means that we can write the given sum as

S =
1

2!

∞∑
n=0

B(4n+ 1, 3).

Now B(x, y) may also be expressed in integral form,

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt

per https://en.wikipedia.org/wiki/Beta_function. Therefore we can
write the given sum as

S =
1

2

∫ 1

0

( ∞∑
n=0

t4n

)
(1− t)2dt.

For the sum inside the integrand, we know that, for |x| < 1,

N∑
n=0

xn =
1− xN+1

1− x

so
N∑
n=0

(
t4
)n

=
1−

(
t4
)N+1

1− t4
=

1− t4N+4

1− t4

and
∞∑
n=0

t4n =
1

1− t4
.

Therefore

S =
1

2

∫ 1

0

(1− t)2

1− t4
dt =

1

2

∫ 1

0

1− t
(1 + t)(1 + t2)

dt

=
1

2

∫ 1

0

(
1

1 + t
− t

1 + t2

)
dt

=
1

2

[
log(1 + t)− 1

2
log
(
1 + t2

)]1

0

=
log 2

4
.

https://en.wikipedia.org/wiki/Beta_function


Page 16 M500 303

Problem 303.5 – Sum of two cube roots
Tony Forbes
For which positive integers a, b is (a +

√
b)1/3 + (a −

√
b)1/3 an integer?

Assume both cube roots are real. For example, the expression evaluates to
1 when (a, b) = (2, 5).

Solution 297.3 – Bridge
Devise an arrangement of the cards and a bidding sequence
where you could realistically and sensibly end up playing in 8♦.
Assume such a bid is legitimate. Assume you and the other
three players always bid and play intelligently. Whether bids
at the eighth level should be allowed is a debatable point. The
practice is currently banned by World Bridge Federation rules,
but that has not always been the case.

Tony Forbes
I showed this to a few bridge players I know. Initially they weren’t par-
ticularly impressed. They offered the simplistic explanation that you are
prepared to go a few down in 8 diamonds to stop the other side from making
a grand slam. Then I pointed out that surely the defenders have everything
to gain and nothing to lose by doubling.

Now we appreciate the difficulty: explaining why the final contract is
allowed to go undoubled. Here is a possible scenario.

N: ♠– ♥QJxxxxxxx ♦xxxx ♣–

W: ♠xx ♥xx ♦– ♣xxxxxxxxx E: ♠AKxxxxxxxxx ♥– ♦AK ♣–

S: ♠– ♥AK ♦QJxxxxx ♣AKQJ

Dealer S, both sides vulnerable; bidding: S 2♦, W pass, N 4♥, E 7♠,
S (Judging by the confident manner of E’s bid the grand slam must be
certain.) 8♦, W pass, N pass, E (If I double, N or S might transfer to 8♥,
which could easily go just 1 down. On the other hand 8♦ goes at least 3
down.) pass.

Result: 7♠ makes for at least 1710 points, 8♦ goes 3 down for −300,
8♥× goes 1 down for −200. Thus E’s final pass gets a better result.
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Problem 303.6 – Sixth powers
Tony Forbes
For which positive integers a and b is (a(a+ b)(a+ 2b) + 1)1/6 an integer?

For instance, with (a, b) = (28, 157) we have 28 · 185 · 342 + 1 = 116.
Curiously, (a, b) = (45, 107) gets the same result. However, the most im-
pressive example I have found so far is (a, b) = (331, 1028) → 326, which
leads to an even more interesting problem.

Problem 303.7 – Thirtieth powers
Either show that the only solution in positive integers a, b and c of

a(a+ b)(a+ 2b) + 1 = c30

is a = 331, b = 1028, c = 2, or find another.

Problem 303.8 – Odd binomial coefficients

Show that

(
2n− 1

n

)
is odd iff n is a power of 2.

Polyhedra
Jeremy Humphries
Deduce the missing word in this poem.

Said the dodecahedron, “How cruel –
With the icosahedron, by rule

Of the fortunes of fate,
I can never be mate,

Though we’re each one the other one’s dual.

Does the earth perform actions tectonic?
Are there aural sensations symphonic?

Ah, would that it were so,
But the answer is ‘No’.

Our relationship’s purely .”
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