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Solution 311.2 – Triangle-free regular graphs
Prove that there exists a k-regular graph with 2k+1 vertices and
girth at least 4 only when k is 0 or 2. Or find a counter-example.

Dave Clark
A k-regular graph with 2k + 1 vertices has k(2k + 1)/2 edges. Obviously
this must be an integer, and as 2k + 1 is odd for every integer k, we’ll only
have k(2k + 1)/2 being an integer when k is even.

Suppose we have a k-regular graph with 2k + 1 vertices and girth at
least 4 (i.e. triangle-free). Let v be any vertex, let X1 be the set of vertices
which are neighbours of v, and let X2 be the set of vertices other than v
which are neighbours of vertices in X1. As v has degree k, there must be
exactly k vertices in X1, and triangle-freedom means there cannot be any
edges joining vertices in X1 to each other, so each vertex in X1 has exactly
k − 1 neighbours in X2.

Since there must be at least k− 1 vertices in X2, notice that v, X1 and
X2 together account for at least 1 + k + (k − 1) = 2k vertices. The last
remaining vertex must have k neighbours, and it cannot be a neighbour of
v (else it would be in X1), and we have so far counted only k − 1 vertices
in X2, so it must have at least one neighbour in X1 and it is therefore also
in X2, so there are k vertices in X2 altogether.

There are k edges connecting v to vertices in X1, and k(k − 1) edges
connecting vertices in X1 to vertices in X2, but the k vertices in X2 all have
degree k, and triangle-freedom means that none of them is a neighbour of
v, so there must be exactly k(2k + 1)/2− k − k(k − 1) = k/2 edges joining
vertices in X2 to each other. However, triangle-freedom also means that
two vertices in X2 cannot be neighbours if they have a common neighbour
in X1, and each vertex in X1 has k − 1 neighbours in X2, which is all but
one of the vertices in X2, so there can be at most one edge joining vertices
in X2 to each other. Thus k/2 ≤ 1, so k ≤ 2. We’ve already seen that k
must be even, so the only possibilities are when k is 0 or 2.

As it happens, a unique k-regular graph with 2k + 1 vertices and girth
at least 4 exists for k = 0 and for k = 2.

0-regular graph with 1 vertex 2-regular graph with 5 vertices
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The Thue–Morse sequence is aperiodic: A proof

Martin Hansen

Although first investigated by the French mathematician Eugène Prouhet in
1851, the Thue–Morse sequence is named after the Norwegian, Axel Thue,
who used it in 1906 as a foundation stone for the branch of mathematics
Combinatorics on Words, and the American, Marston Morse, who applied
it in 1921 to great effect in differential geometry. It can be defined in several
ways. The following is particularly suited to introducing the sequence.

Definition : Generation of the Thue–Morse Word

The right-sided infinite Thue–Morse word may be generated in an it-
erative fashion by starting with an initial letter a and then repeatedly
applying the substitution θTM given by a → ab, b → ba. The finite
nth right-sided Thue–Morse word is defined as TMn = θnTM(a).

The table below gives the first few of the finite Thue–Morse words

n TMn = θnTM(a) (a→ ab, b→ ba) |a| |b| |T Mn|

0 a 1 0 1
1 ab 1 1 2
2 abba 2 2 4
3 abbabaab 4 4 8
4 abbabaabbaababba 8 8 16
5 abbabaabbaababbabaababbaabbabaab 16 16 32

In the table, observe that each preceding word occurs at the start of
every subsequent word. In other words, the infinite Thue–Morse word is the
fixed point of an iterative process. What makes the Thue–Morse sequence
interesting is the fact that it is clearly not a chaotic random jumble of the
letters a and b. It seems to have pattern, but that pattern is hard to pin
down.

The full bi-infinite Thue–Morse word extends indefinitely to both the
left and the right. It has two remarkable properties that in combination are
what earn it the label ‘aperiodic’. The first is that if a duplicate copy of the
word is made, and translated left or right over the first, there is no position
at which the two pieces align other than if no translation is applied at all.
However, the following bi-infinite sequence also has this property,

. . . aaaaaaaaabaaaaaaaaa . . . .
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This is an example of a sequence that is non-periodic but it is not aperi-
odic. To be aperiodic there is the additional requirement that the sequence
contain no arbitrarily large periodic part.

Incidence Matrix and Perron–Frobenius Eigenvalue

Mathematically, this second requirement demands the substitution be prim-
itive. To explain this property, we first need to establish what the incidence
matrix of a substitution is. Let’s look at an example where there are no
parts that can be confused with each other. Consider the substitution,

a→ abaaaba, b→ abbb.

This has incidence matrix (
5 1
2 3

)
because, in the substitution, a is replaced with five a and two b whereas b is
replaced with one a and three b. The matrix carries frequency information
but the order of the letters within the substitution is lost. Undergraduate
matrix algebra is now used to obtain the characteristic polynomial and the
eigenvalues. For the above,

λ2 − 8λ+ 13 = 0 with λ = 4±
√

3.

To be primitive the incident matrix (or a positive integer power of that
matrix) must have all positive entries. The above matrix satisfies this re-
quirement and so is the primitive matrix of a primitive substitution. Such
a matrix has a largest positive eigenvalue (by Perron–Frobenius theory)
called the Perron–Frobenius eigenvalue. For our example, λPF = 4 +

√
3.

In general, if this special eigenvalue is irrational, we immediately know that
the substitution is aperiodic. This is because of Theorem 1, which formally
tidies up the above discussion.

Theorem 1 : Aperiodic Proof (Baake and Grimm, 2013)

Let θ be a primitive substitution on the finite alphabet An =
{a1, a2, . . . , an} with incidence matrix Mθ, and let w be a bi-infinite
word of θ. If the Perron–Frobenius eigenvalue of Mθ is irrational,
then w is aperiodic.

Proof

See Aperiodic Order: Volume 1, A Mathematical Invitation, by Michael
Baake and Uwe Grimm, page 89. �
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Unfortunately, Theorem 1 does not allow us to lazily deduce that the
Thue–Morse word is aperiodic. Although the Thue–Morse substitution sat-
isfies the requirement of the theorem that it be primitive, the incidence
matrix gives rise to an integer eigenvalue rather than one that is irrational.
To be specific,

MTM =

(
1 1
1 1

)
⇒ λ2 − 2λ = 0 ⇒ λPF = 2.

The integer eigenvalue means that our desire to prove the Thue–Morse se-
quence is aperiodic is going to be a ‘living on our wit and cunning’ affair.
Along the way we shall make use of another definition of the Thue–Morse
words.

Definition : The Thue-Morse Words by Concatenation

TMn = TMn−1 TMn−1

for integer n ≥ 1, with TM0 = a.

For example,

TM4 = TM3 TM3 = abbabaababbabaab = abbabaabbaababba.

The Thue–Morse Language Table

We are now almost ready to start working through the steps that will result
in a proof that the Thue–Morse word is indeed aperiodic. However, there
is one more idea to be grasped before starting in earnest. It is to consider
how many subwords of various lengths can occur in the Thue–Morse word.
To help explain this here is the start of the right-sided infinite word once
again,

abbabaabbaababbabaababbaabbabaab . . . .

Looking carefully, notice that the subword aaa does not appear. This is
an example of a cube. Whilst abab can be found (an example of a square)
ababab, another cube, can not. A substitution’s language table is the start
of an effort to tabulate which subwords can occur. It can be drawn up by
hand, but often software is used. Here is the start of such a table for the
Thue–Morse word. This table will be useful later on.
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length 1 2 3 4 5 6 7 . . .
a aa aab aaba aabab aababb aababba . . .
b ab aba aabb aabba aabbaa aabbaab . . .

ba abb abaa abaab aabbab aabbaba . . .
TM bb baa abab ababb abaaba abaabab . . .
words bab abba abbaa abaabb abaabba . . .

bba baab abbab ababba ababbaa . . .
a→ ab baba baaba abbaab ababbab . . .
b→ ba babb baabb abbaba abbaaba . . .

bbaa babaa baabab abbaabb . . .
bbab babba baabba abbabaa . . .

bbaab babaab baababb . . .
bbaba babbaa baabbaa . . .

babbab baabbab . . .
bbaaba babaaba . . .
bbaabb babaabb . . .
bbabaa babbaab . . .

babbaba . . .
bbaabab . . .
bbaabba . . .
bbabaab . . .

� of words 2 4 6 10 12 16 20 . . .

The Proof

This builds steadily over the next three pages as we establish three lemmas
and define what it means to be strongly cube free. We then show that the
(infinite) Thue–Morse word is strongly cube-free and so aperiodic.

Lemma 1 : Exclusion from TM of aaa and bbb

The subwords aaa and bbb cannot occur in the Thue–Morse word.

Proof (by contradiction)

Suppose by way of deriving a contradiction that the three letter subword
. . . aaa . . . has occurred in TM. Focus on the middle a. We can argue that
this a must have come from the iteration in a previous word of a letter b
because if it had come from a letter a then one of the letters adjacent to
a would be b, which neither is. But if it had come from a letter b then,
again, one of the letters adjacent to a would be b, which neither is. The
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only conclusion is that the original assumption, that . . . aaa . . . could occur
in the Thue–Morse word is false. By a similar argument, . . . bbb . . . can also
not occur in TM. �

Lemma 2 : Exclusion from TM of ababa and babab

The subwords ababa and babab cannot occur in the Thue–Morse word.

Proof (by contradiction)

Assume that the five letter subword . . . ababa . . . has occurred in TM. With
a view to desubstitution this word can be placed into letter pair brackets in
two ways, either as . . . (ab)(ab)(a . . . or . . . a)(ba)(ba) . . . , which we consider
in turn.

CASE 1 : . . . (ab)(ab)(a . . .

The first bracketed pair desubstitutes to a, as does the second. In order
to desubstitute the third bracket the subsequent letter must be b. We then
have the following.

. . . (ab) (ab) (ab) . . .
↓ ↓ ↓ desubstitution

. . . a a a . . .

However, from Lemma 1, it is known that . . . aaa . . . can not occur and so
we deduce that . . . (ab)(ab)(a . . . can not occur.

CASE 2 : . . . a)(ba)(ba) . . .

The last bracketed pair desubstitutes to b, as does the bracket before.
In order to desubstitute the first bracket the previous letter must be b. We
then have the following.

. . . (ba) (ba) (ba) . . .
↓ ↓ ↓ desubstitution

. . . b b b . . .

However, from Lemma 1, it is known that . . . bbb . . . can not occur and so
we deduce that . . . a)(ba)(ba) . . . can also not occur.

It has thus been shown that neither ababa nor babab are subwords of
TM. �

Lemma 3 : The aa, bb constraint on TM subwords

Any subword of the Thue–Morse word that contains five letters or
more, must contain aa or bb.
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Proof

With only two letters to play with, the only way to write down a subword
of length five without aa or bb occurring is to alternate the occurrences of
a and b. This can be done in two ways, either ababa or babab. However,
Lemma 2 tells us that neither of these is legal. Therefore any subword of
five letters must contain either aa or bb. Any subword of more than five
letters must contain five letter subwords. Such subwords must contain aa
or bb and therefore so must any subword of more than five letters. �

Definition : Cube-free words

For a non-empty finite word u, let u0 and uz denote the first and last
letters of u, respectively.
A weak cube is a word of the form uuu0 (or, equivalently, uzuu).
A word w is strongly cube-free if it does not contain any weak cubes.

Theorem 2 : Strongly Cube-free

The Thue–Morse word is strongly cube-free.

Proof (by contradiction)

Let us assume the opposite of the claimed result, that the Thue–Morse
word, TM = w0w1w2 . . . , contains at least one subword, u, such that uuu0
is a subword of TM. Consider the minimal length of u and denote that
minimal length l. In other words, |u| = l. Clearly, u cannot be a single
letter a or a single letter b for then uuu0 would be aaa or bbb respectively,
both of which, from Lemma 1, are illegal. Nor can u be either of the double
letter subwords aa or bb for the same reason. So, the minimum length that
u can be is two and, even then, only ab or ba are possibilities. However, if u
was ab or ba then uuu0 would be ababa or babab respectively, both of which,
by Lemma 2 are illegal. So |u| ≥ 3 and |uuu0| ≥ 7. This implies that uuu0
can only be found in a Thue–Morse word of seven or more letters. The first
such word is TM3 = abbabaab. Notice that the occurrence of bb in this
word is at w1 and aa at w5. The manner of generating subsequent words
using

TMn = TMn−1TMn−1

means both that there will always be at least two aa or bb and that all such
occurrences are at positions wx, where x is an odd number. Now consider
the parity of l.
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CASE 1 : l is odd

If |u| = 3, then we can draw up the following table of u and uuu0 and
show by desubstitution that none of the six possible uuu0 can be in the
Thue–Morse word. Alternatively it can be seen by an inspection of the
Thue–Morse language table, given earlier, that none of these uuu0 are legal
subwords.

u uuu0

aab aabaaba
aba abaabaa
abb abbabba
baa baabaab
bab babbabb
bba bbabbab

For |u| ≥ 5, we know from Lemma 3 that u contains aa or bb at least twice
(as indeed does TM). Where they occur in TM (and there will be an
infinite number of such occurrences) must be at odd positions. Thus the
distances between all occurrences of aa and bb are even. Crucially, one of
these distances must be l. However, we are looking at the case where l is
odd and so this contradicts that assumption. To summarise, the assumption
that l is odd has led to a contradiction and so that assumption cannot be
correct.

CASE 2 : l is even

Recall that in the Thue–Morse word deleting every other letter in
an odd position results in the Thue–Morse word. So if a subword u =
w0w1w2 . . . wl−1 (of even length) gives a uuu0 in TM then so too must
u′ = w0w2 . . . wl−2. This, however, is a shorter word, in contradiction to l
being minimal.

In overall conclusion, the Thue–Morse word is strongly cube-free. �

Corollary : The Thue–Morse Aperiodicity

The Thue–Morse word is aperiodic.

Proof

This follows immediately from Theorem 2. �
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Intuitive Understanding

The proof tells us that, given any piece whatsoever (of any finite length)
of the Thue–Morse word, that piece will never occur more than twice in
succession. It may well occur singly or as a pair an infinite number of
(spaced out) times in the word, but that is another story.

Acknowledgement

An outline sketch of this proof was suggested by the late Uwe Grimm when
I knew him at the Open University in 2021. Discussions in 2023 with Dr
Nicholas Korpelainen and Dr Petra Staynova at the University of Derby
further added to the mix of ideas that have now crystallised in the proof
presented.

Problem 314.1 – Cosines
David Sixsmith
The cosine formula

a2 = b2 + c2 − 2bc cosA, (1)

where a, b, c are the sides of a triangle and A is the angle opposite the side
of length a, is well known. Equation (1) can be written in a symmetric
‘Pythagorean’ form

a2 = (αb+ βc)2 + (βb+ αc)2. (2)

An initial problem it to find α and β as simple functions of the angle A. A
more difficult problem is to find a direct geometric justification for equation
(2), in other words, a derivation that does not use the cosine formula. (I
have not had success with the latter.)

Problem 314.2 – Rational eigenvalues
Tony Forbes
For which positive integers a does the matrix

M =

 1 1 1
1 2 a
1 b c


have non-zero determinant and rational eigenvalues for some positive inte-
gers b and c?
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Pythagoras’ theorem revisited again
Tony Forbes
My proof of the Pythagorean theorem in M500 313 has been the subject
of a certain amount criticism from various people to whom I have shown it.
Leaving aside any questioning of the author’s sanity, the main discussion
was centered on my sledgehammer approach to the solution of a standard
problem in high-school Euclidean geometry. Spread over three pages (albeit
A5 ones) it is far too long-winded.

The power-series proof in M500 313, which involves computing (1) and
then letting n tend to infinity, can be done much more easily by dealing
directly with infinite sums. However, I claim that my proof is of some
interest (at least to me). It avoids tortuous geometric reasoning involving
such lofty concepts as ‘angles’, ‘straight lines’ and the relations between
them. And since there isn’t one, we don’t have to worry about our diagram
truly representing the general case.

I was quite keen to see exactly what happens when you compute the
finite sum (

n∑
k=0

(−1)k
x2k

(2k)!

)2

+

(
n∑
k=0

(−1)k
x2k+1

(2k + 1)!

)2

. (1)

For instance, when n = 4 you get

131681894400 + 72576x10 − 30240x12 + 2160x14 − 63x16 + x18

131681894400
,

and you can plainly see that this is nearly equal to 1 when |x| is not too
large. What has happened is that all the small positive powers of x have
disappeared. For general n, as explained in M500 313, the non-constant
part of the polynomial looks like this,

a2n+2x
2n+2 + a2n+4x

2n+4 + · · ·+ a4n+2x
4n+2,

with the ak bounded by ±2k/k!. Thus we are assured of rapid convergence
to zero for any x. Just make n go to ∞.

For the critics, I offer the suggested alternative proof of the theorem.
Like the one in M500 313, there is no mention of triangles or trigonometry.
We achieve considerable simplicity because we avoid the complicated details
associated with manipulating finite sums. However, the simplicity is an
illusion. We are not bothering to answer thorny questions concerning the
convergence of any infinite power series that appears in our argument.
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Theorem 1 (Pythagoras) We have( ∞∑
k=0

(−1)k
x2k

(2k)!

)2

+

( ∞∑
k=0

(−1)k
x2k+1

(2k + 1)!

)2

= 1.

Proof Let

C(x) =

∞∑
k=0

(−1)k
x2k

(2k)!
, S(x) =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
.

Then

C2(x) =

∞∑
j=0

∞∑
k=0

(−1)j+k
x2j+2k

(2j)!(2k)!
.

Put r = k + j:

C2(x) =

∞∑
r=0

r∑
j=0

(−1)r
x2r

(2j)!(2r − 2j)!
=

∞∑
r=0

(−1)r
x2r

(2r)!

r∑
j=0

(
2r

2j

)
.

The binomial sum can be evaluated: it is 1 when r = 0 and 22r−1 when
r ≥ 1. Hence

C2(x) = 1 +
1

2

∞∑
r=1

(−1)r
(2x)2r

(2r)!
=

1 + C(2x)

2
. (2)

Similarly,

S2(x) =

∞∑
r=0

r∑
j=0

(−1)r
x2r+2

(2j + 1)!(2r − 2j + 1)!

=

∞∑
r=0

(−1)r
x2r+2

(2r + 2)!

r∑
j=0

(
2r + 2

2j + 1

)

=
1

2

∞∑
r=0

(−1)r
(2x)2r+2

(2r + 2)!
=

1− C(2x)

2

since the binomial sum is 22r+1 for r ≥ 0. Combining with (2), we have

C2(x) + S2(x) = 1. �
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If we permit the use of i =
√
−1, the previous argument can be expressed

even more succinctly. Define

E(x) =

∞∑
k=0

xk

k!
,

and observe that

E(x)E(y) =

∞∑
j=0

∞∑
k=0

xj

j!

yk

k!
=

∞∑
r=0

1

r!

r∑
j=0

xjyr−j
(
r

j

)

=

∞∑
r=0

1

r!
(x+ y)r = E(x+ y). (3)

Also one can easily verify the familiar identities

E(ix) = C(x) + iS(x), E(−ix) = C(x)− iS(x) (4)

by splitting the sum for E(±ix) into a part that does not explicitly involve
i and a part that does.

Now the proof of Theorem 1 is extremely straightforward:

C2(x) + S2(x) =
(
C(x) + iS(x)

)(
C(x)− iS(x)

)
= E(ix)E(−ix) = E(0) = 1.

By looking at the power series expressions, we see immediately that
E(0) = C(0) = 1, S(0) = 0. And I believe that E(1) ≈ 2.71828 is an
important mathematical constant.

By computing its power series to sufficiently many terms we can verify
that S(x) has a zero in the vicinity of 22/7. So let us define a number,
which we shall call π, by

S(π) = 0, 3.14 ≤ π ≤ 3.15. (5)

This number has some interesting properties. Using Pythagoras’ theorem
we obtain C(π) = ±1, and by comparing with the value obtained from
directly computing the power series, C(π) ≈ −1.0, it is clear that we must
select the negative sign; thus C(π) = −1 exactly. Then, by making use of
(3) and (4), we have

E(iπ) = − 1, E(2iπ) = 1,
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E(x+ 2iπ) = E(x)E(2iπ) = E(x),

C(x+ 2π) = C(x), S(x+ 2π) = S(x).

Thus we have shown that C(x) and S(x) are periodic with period 2π. More-
over, it is not difficult to prove that whenever j is an integer

S(jπ) = C
(
jπ +

π

2

)
= 0,

C(2jπ) = S
(

2jπ +
π

2

)
= 1,

C(2jπ + π) = S
(

2jπ − π

2

)
= − 1,

and, again with the help of (3) and Pythagoras’ theorem, we can obtain
values at other rational multiples of π, such as

S
(π

4

)
= C

(π
4

)
=

√
2

2
,

S
(π

3

)
= C

(π
6

)
=

√
3

2
, S

(π
6

)
= C

(π
3

)
=

1

2
,

S
(π

5

)
=

√
5

8
−
√

5

8
, C

(π
5

)
=

1 +
√

5

4
.

The proofs are straightforward and left to the reader.

Finally, let us define yet another function by a power series:

D(x) =

∞∑
k=0

(−1)k
(

1/2

k

)
x2k+1

2k + 1

= x− x3

6
− x5

40
− x7

112
− 5x9

1152
− 7x11

2816
− 21x13

13312
− 11x15

10240
− . . . ,

valid for −1 ≤ x ≤ 1 (the coefficient of x2k+1 is O(k−5/2); see Problem
314.3 on page 16). By computing the power series to sufficient accuracy,
you can verify that D(1) ≈ π/4. Moreover, you probably recognise D(x) as∫ x

0

√
1− u2 du, and so possibly one can argue that 4D(1) is the area of a

unit circle—whatever that might mean. So we offer an interesting problem
for you to solve.

Prove that 4D(1) = π, where π is defined by (5).
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Solution 308.4 – Group construction

Let G be a finite group of even order. Let H be a subgroup of
G of order |G|/2. Let A = G \ H and assume there exists an
element a of A that commutes with every element of A. Show
that (A, ◦) is a group, where the operation ◦ is defined by

x ◦ y = xya.

Tommy Moorhouse

Preliminary lemmas We are given a group G of even order, with a sub-
group H of order |G|/2, and we need to show that A = G\H is a group
when the group operation is

a1 ◦ a2 = a1a2a

where a ∈ A commutes with all elements of A and the operation on the
right is the group product in G. We will do this by checking the group
axioms, but first we need some lemmas.

Lemma 1 If a1 ∈ A then a−11 ∈ A, where the inverse is w.r.t. the group
product in G.

Proof Suppose that h 6∈ A, so that h ∈ H, and further that ha1 = e.
Since e ∈ H and h−1 ∈ H (H is a subgroup of G) we have a1 = h−1 ∈ H,
a contradiction.

Lemma 2 Fix a ∈ A. The set {ha : h ∈ H} = A.

Proof Suppose that h ∈ H, a ∈ A and ha = h1 ∈ H. Multiplying the last
expression from the left by h−1 we have a = h−1h1 ∈ H, a contradiction.
Thus ha ∈ A for all h ∈ H. Now we show that as h ranges over H we get
each element of A. For suppose h1a = h2a. Multiplying from the right by
a−1 we find h1 = h2. Each element of H thus gives a different element of
A, and the lemma is proved.

Corollary Fix a2. Then if a1 ∈ A we have a1 = ha2 for some h ∈ H.

Lemma 3 If a1 ∈ A, a2 ∈ A then a1a2 ∈ H.

Proof Suppose that a1a2 = a3 ∈ A. By the corollary to Lemma 2
a1 = ha−12 for some h ∈ H, so a3 = h, a contradiction.
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Checking the group axioms The axioms are listed below (in no
particular order), together with a demonstration that {A, ◦} satisfies each
one.

Axiom I: Closure Let G be a group. If g ∈ G, g′ ∈ G then gg′ ∈ G.

Closure in {A, ◦}. For a1, a2 ∈ A we have

a1 ◦ a2 = a1a2a

= ha ∈ A

for some h ∈ H. The second equality follows from Lemma 3, and the
conclusion from Lemma 2.

Axiom II: Identity There is an element e ∈ G such that eg = ge = g for
all g ∈ G

Identity in {A, ◦}. We have fixed a to be an element of A commuting
with every other element of A. Given a1 ∈ A we consider the action of the
element a−1

a1 ◦ a−1 = a1a
−1a

= a1.

Since a commutes with all elements of A we easily see that a−1 ◦ a1 = a1,
so a−1 is the required identity e in A.

Axiom III: Inverses If g ∈ G there is a unique g′ ∈ G such that gg′ =
g′g = e.

Inverses in {A, ◦}. Given a1 ∈ A consider the element a−11 (a−1)2. This is
in A and

a1 ◦ a−11 (a−1)2 = a1a
−1
1 a(a−1)2

= a−1,

which is the identity in {A, ◦}. Uniqueness is readily established. Suppose
that a1 ◦ a2 = a−1. Then a1a2a = a−1 and a2 = a−11 (a−1)2.

Axiom IV: Associativity If g ∈ G, g′ ∈ G and g′′ ∈ G then (gg′)g′′ =
g(g′g′′), where the brackets indicate the order in which the products are to
be evaluated.



Page 16 M500 314

Associativity in {A, ◦}. For a1, a2, a3 ∈ A we have

(a1 ◦ a2) ◦ a3 = (a1a2a) ◦ a3
= a1a2aa3a

= a1a2a3a
2

since a commutes with a3, while

a1 ◦ (a2 ◦ a3) = a1 ◦ (a2a3a)

= a1a2a3a
2.

This establishes that {A, ◦} is a group.

Problem 314.3 – Binomial coefficient
Tony Forbes
Show that for large n, (

1/2

n

)
∼ (−1)n+1

2
√
π n3/2

.

The expression on the left is interpreted as

1

2

(
1

2
− 1

)(
1

2
− 2

)
. . .

(
1

2
− n+ 1

)
n!

,

i.e. half choose n, the number of ways to select n objects from half an object.

Problem 314.4 – A triangle and a circle

A circle that passes through A and
B of equilateral triangle ABC meets
BC at D.

The length of |AD| is 1.

What’s the area of the circle?

A

B CD
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Solution 309.7 – Limit
Show that

x sin y − y sinx

x cos y − y cosx
→ tan(x− arctanx) as y → x.

Richard Gould
Let y = x+ δ then

lim
y→x

x sin y − y sinx

x cos y − y cosx
= lim

δ→0

x sin(x+ δ)− (x+ δ) sinx

x cos(x+ δ)− (x+ δ) cosx

= lim
δ→0

x(sinx cos δ + cosx sin δ)− (x+ δ) sinx

x(cosx cos δ − sinx sin δ)− (x+ δ) cosx

= lim
δ→0

x tanx cos δ + x sin δ − (x+ δ) tanx

x cos δ − x tanx sin δ − (x+ δ)
.

Expanding Taylor series to O(δ3) gives

lim
δ→0

x tanx(1− δ2/2) + x(δ − δ3/6)− (x+ δ) tanx

x(1− δ2/2)− x tanx(δ − δ3/6)− (x+ δ)

= lim
δ→0

−δ2x tanx/3 + δ(x− tanx)− δ3x/6
−δ2x/2− δ(x tanx+ 1)− δ3x tanx/6

.

Dividing through by δ and letting δ → 0 gives

lim
y→x

x sin y − y sinx

x cos y − y cosx
=

x− tanx

−(x tanx+ 1)

=
tanx− x

1 + x tanx
= tan(x− arctanx),

as required.

Note: As is often the case, when given the solution, it can be helpful to
work backwards as well as forwards to arrive at the solution. In this case
an initial step of

tan(x− arctanx) =
tanx− x

1 + x tanx

is particularly illuminating.
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Solution 311.6 – Square and dodecagon
Show that the square and the dodecagon are the only regular
polygons that have rational areas when inscribed in a unit circle.

Dave Clark
We will use the following result, which is a form of Niven’s Theorem.

Lemma 1 (Niven) If sin(qπ) is rational for some rational number q then
sin(qπ) is −1, − 1

2 , 0, 1
2 , or 1.

If a regular polygon with n sides is inscribed in a unit circle, it is composed
of n segment triangles each with a central angle of 2π/n.

1

2π/n

cos(π/n)

sin(π/n)

sin(π/n)

The side length is 2 sin(π/n) and the apothem (distance from the centre
of the circle to the side) is cos(π/n), so the area of each segment triangle is
cos(π/n) sin(π/n) and the area of the polygon is therefore

n cos(π/n) sin(π/n) =
n

2
sin(2π/n).

This area is rational only when sin(2π/n) is rational, and Lemma 1 tells us
that if sin(2π/n) is rational then it must be −1, − 1

2 , 0, 1
2 , or 1. In fact,
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since 2π/n is between 0 and π, and sine is positive over this range, sin(2π/n)
must be 1

2 or 1.

If sin(2π/n) = 1
2 then either 2π/n = π/6, which gives n = 12, or 2π/n =

5π/6 which doesn’t give an integer n. If sin(2π/n) = 1 then 2π/n = π/2,
which gives n = 4. This means the square (n = 4) and the dodecagon
(n = 12) are the only such polygons with rational areas.

Proof of Lemma 1

Let r = 1
2 − q, and note that sin(qπ) = cos(rπ), since sin(θ) ≡ cos(π2 − θ).

If q is rational then so is r, and we can write r = a/b as a fraction in
its lowest terms, with integers a and b coprime (no common factors) and b
positive. For k = 0, 1, 2, . . . consider the sequence of values 2 cos

(
2krπ

)
=

2 cos
(
2kaπ/b

)
. Since cosine is periodic with period 2π, 2 cos

(
2kaπ/b

)
can

take at most 2b distinct values, so this sequence must repeat after at most
2b terms.

If sin(qπ) is rational then so is cos(rπ), and we can write 2 cos(rπ) = c/d
as a fraction in its lowest terms, with integers c and d coprime (no common
factors) and d positive. Recall that

cos(2θ) ≡ 2 cos2(θ)− 1,

so

2 cos(2rπ) = 2
(
2 cos2(rπ)− 1

)
= (2 cos(rπ))2−2 =

c2

d2
−2 =

c2 − 2d2

d2
.

This is also a fraction is its lowest terms, because if p | d2 for some prime p
then p | d, and if we also have p | (c2 − 2d2) then we must have p | c2 and
so p | c, but this contradicts c and d being coprime (no common factors) so
d2 and (c2 − 2d2) must also be coprime. We can repeat this process using

2 cos
(
2krπ

)
=
(
2 cos

(
2k−1rπ

))2 − 2

to get an expression for 2 cos(22rπ) in lowest terms with d4 as the denomi-
nator, and so on, with the denominator for 2 cos

(
2krπ

)
expressed in lowest

terms being d2
k

. But if d > 1 then d2
k

is strictly increasing, which means
the sequence can never repeat, which gives us a contradiction because we
know the sequence can take at most 2b distinct values. So we must have
d = 1.

If d = 1 then sin(qπ) = cos(rπ) = c/(2d) = c/2 for some integer c, but
−1 ≤ sin(qπ) ≤ 1 so sin(qπ) can only be −1, − 1

2 , 0, 1
2 , or 1. �



Page 20 M500 314

Problem 314.5 – Pascal and Bernoulli
Tony Forbes
Let n be a positive integer and let A be the Pascal triangle matrix of size
n+ 2, where

Ar,c =

(
r

c

)
,

with the usual convention that

(
r

c

)
= 0 whenever c > r. Form an n × n

non-singular matrix B by subtracting 1 from the positive entries of A and
discarding any rows and columns that consist entirely of zeros. For example,
when n = 13, you should end up with

B =



1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0 0 0 0 0 0
3 5 3 0 0 0 0 0 0 0 0 0 0
4 9 9 4 0 0 0 0 0 0 0 0 0
5 14 19 14 5 0 0 0 0 0 0 0 0
6 20 34 34 20 6 0 0 0 0 0 0 0
7 27 55 69 55 27 7 0 0 0 0 0 0
8 35 83 125 125 83 35 8 0 0 0 0 0
9 44 119 209 251 209 119 44 9 0 0 0 0

10 54 164 329 461 461 329 164 54 10 0 0 0
11 65 219 494 791 923 791 494 219 65 11 0 0
12 77 285 714 1286 1715 1715 1286 714 285 77 12 0
13 90 363 1000 2001 3002 3431 3002 2001 1000 363 90 13



.

Now compute B−1, the inverse of B. This is shown on the next page for
our example with n = 13, and we see exhibited many striking features—
for instance, the fractions 1/r appearing along the diagonal. But the most
interesting (to me) is the appearance of the Bernoulli numbers, [https:
//mathworld.wolfram.com/BernoulliNumber.html],

k 0 1 2 3 4 5 6 7 8 9 10 11 12

Bk 1 −1

2

1

6
0 − 1

30
0

1

42
0 − 1

30
0

5

66
0 − 691

2730

as the row sums of the matrix as well as in column 1, rows 1, 5, 7, 9, 11,
13. (The last one is a bit of a give-away. Anytime you see the integer 691
you can be sure that Bernoulli numbers are not far away.)

https://mathworld.wolfram.com/BernoulliNumber.html
https://mathworld.wolfram.com/BernoulliNumber.html
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So that’s the problem. Where do these Bernoulli numbers come from?

Thanks to Robin Whitty for suggesting this construction at a Lon-
don South Bank University Maths Study Group meeting, https://www.

theoremoftheday.org/MathsStudyGroup/index.html. A convenient way
of computing Bk is to use the formula

B0 = 1, Bk = − 1

k + 1

k−1∑
j=0

(
k + 1

j

)
Bj , k ≥ 1.



1 0 0 0 0 0 0 0 0 0 0 0 0

−1
1

2
0 0 0 0 0 0 0 0 0 0 0

2

3
−5

6

1

3
0 0 0 0 0 0 0 0 0 0

−1

4

3

4
−3

4

1

4
0 0 0 0 0 0 0 0 0

− 1

30
−1

3

5

6
− 7

10

1

5
0 0 0 0 0 0 0 0

1

12
− 1

12
− 5

12

11

12
−2

3

1

6
0 0 0 0 0 0 0

1

42

1

6
−1

6
−1

2
1 − 9

14

1

7
0 0 0 0 0 0

− 1

12

1

12

7

24
− 7

24
− 7

12

13

12
−5

8

1

8
0 0 0 0 0

− 1

30
−2

9

2

9

7

15
− 7

15
−2

3

7

6
−11

18

1

9
0 0 0 0

3

20
− 3

20
−1

2

1

2

7

10
− 7

10
−3

4

5

4
−3

5

1

10
0 0 0

5

66

1

2
−1

2
−1 1 1 −1 −5

6

4

3
−13

22

1

11
0 0

− 5

12

5

12

11

8
−11

8
−11

6

11

6

11

8
−11

8
−11

12

17

12
− 7

12

1

12
0

− 691

2730
−5

3

5

3

33

10
−33

10
−22

7

22

7

11

6
−11

6
−1

3

2
−15

26

1

13



.

https://www.theoremoftheday.org/MathsStudyGroup/index.html
https://www.theoremoftheday.org/MathsStudyGroup/index.html
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Buffalo
Jeremy Humphries
I acknowledge that M500 is a mathematics magazine, but mathematicians
will sometimes go in for a bit of wordplay. Martin Gardner dealt mainly
with recreational mathematics, but occasionally he would devote a Scientific
American column to wordplay, sometimes, but not always, involving his
legendary acquaintance Dr I. J. Matrix. Therefore, we can proceed.

Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo. Or so I’ve
been told. It may be true, or it may be casting aspersions on certain even-
toed ungulates of the Family Bovidae. But either way it makes grammatical
sense. It relies on the fact that there are multiple meanings for the word
‘B/buffalo’.

First, ‘Buffalo’ is, among several other places of the same name, the city
in New York State where Ruby Keeler and Clarence Nordstrom shuffled off
to in 42nd Street.

https://www.youtube.com/watch?v=gqYkXQZAhTo

If you are reading this on screen as a pdf, then you can click the link to see
the routine. And of course you can copy the link to your browser by hand
from the printed magazine, if you like. Consequently ‘Buffalo’ can be used
adjectivally to describe residents or natives of that place.

Then there is the name ‘buffalo’, commonly used for the wild cattle
more formally called American bison, and which can have the plural form
‘buffalo’.

Then there is the verb ‘to buffalo’, meaning to bully, intimidate, confuse
and so on.

So – Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo. What
does it mean? It means that bison from Buffalo that are bullied by bison
from Buffalo bully bison from Buffalo themselves.

Now – there’s nothing special about eight B/buffalos in a sentence. It
is the case that a sentence consisting of any number of B/buffalos, from one
upwards, can make sense. Also you don’t actually need the Buffalo location
to do this stuff. The animal name together with the verb will suffice. But
when you do add the location you get longer strings for essentially the same
meaning, so it looks more impressive.

And a sentence consisting of a particular number of B/buffalos can make
sense in more than one way. For instance, here’s another eight-word one:

https://www.youtube.com/watch?v=gqYkXQZAhTo
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Buffalo buffalo buffalo Buffalo buffalo Buffalo buffalo buffalo.

That means that bison from Buffalo bully bison from Buffalo that are al-
ready bullied by bison from Buffalo.

So, I thought I would write a limerick. It’s not too difficult to get the
basic words, but it’s a bit trickier, if you are using the ‘Buffalo’ location,
to put in some necessary capitals, in addition to the ones starting the lines.
And either way it’s a bit tricky to work out the meaning of what you are
saying. One way to devise the limerick, incorporating the ‘Buffalo’ location,
is like this:

Buffalo buffalo Buffalo
Buffalo Buffalo buffalo

Buffalo buffalo
Buffalo Buffalo

Buffalo buffalo buffalo.

In non-verse form, without the line-leading capitals, that would be:

Buffalo buffalo Buffalo buffalo Buffalo buffalo buffalo buffalo
buffalo Buffalo buffalo buffalo buffalo.

It means that bison from Buffalo, that are bullied by bison from Buffalo
that bison from Buffalo bully, themselves bully bison from Buffalo that
bison from nowhere in particular bully.

So, there we go. Since a ‘B/buffalo’ string of any length can make sense,
presumably there is an iterative technique or formula that will produce and
explain such strings. We leave the production of such a thing as an exercise
for the reader.

Problem 314.6 – Square
We won’t bother with a diagram for this high-school geometry problem, and
we insist that you don’t include one in your answer.

There is a square with vertices A, B, C, D, AB‖CD, BC‖AD, point
E bisects AD, and F is the point where a line through C meets BE at 90
degrees. Show that |AB| = |DF |.

Problem 314.7 – Exponential function equation
Find all solutions of

eπx = x2.
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Sylow
Jeremy Humphries
When we were doing Group Theory back in the early days of the OU, we
were introduced to Sylow’s theorems, named for the Norwegian mathemati-
cian Ludvig Sylow. We didn’t have Google to enable us to listen to the
pronunciation of his name, so we had to speculate. My friend Steve Ainley
wrote a limerick about the situation.

Actually we were pretty sure that it was pronounced approximately as
Mrs Sylow’s name is pronounced in the limerick, and a Google enquiry today
backs that up. But something else Google tells us today is that there was
no Mrs Sylow, as Ludvig never married. And of course Sylow (1832–1918)
predates the Li-lo (UK trademark registered 1944), and without doing any
research we were pretty confident that was the case. Still, don’t let facts
get in the way of a good poem. Here we go:

A group theoretician named Sylow
Was afloat with his wife on a Lylow.

In the heat Mrs Sylow
Decided to pylow –

They didn’t come back for a whylow.

A good source of names not pronounced as they look is the British aris-
tocracy. The Earldoms of Wemyss and of March are technically distinct,
but have been held by the same person since 1826, each holder being con-
ventionally styled the Earl of Wemyss and March. Here, for poetic necessity,
I have reversed the order.

The Earldom of March and of Wemyss
Is pronounced not the way that it semyss.

To think that it’s Wemyss
Would be a false premyss,

And not what authority demyss.

Problem 314.8 – Power series coefficients
Tony Forbes
Show that if

√
1− x is expanded as a power series

∑∞
k=0 a

kxk, then the
coefficients ak are integer multiples of powers of 1/2.
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Problem 314.9 – Bernoulli sum
Tony Forbes
Show that for any non-negative integer r,

r∑
j=0

22j(22j − 1)

(
2r

2j

)
B2j = 2r,

where, Bk is the k-th Bernoulli number (see Problem 314.5) on page 20.

Problem 314.10 – Limit
Show that n/(n!)1/n → e as n→∞.

Solution 311.7 – Grand slam
Tony Forbes

As any bridge player knows, it is possible to make a grand slam
with a combined holding of only 5 high-card points. Devise a
deal where it is possible to make a grand slam in a suit with no
card higher than a 10.

I showed the problem to a few bridge players. “No way!” was the usual
response, “Blah blah ace of trumps blah blah.” But of course they were
assuming competent defence.

Dealer West.

North: ♠xxxx ♥– ♦– ♣xxxxxxxxx

West: ♠AQ ♥AKQJx ♦AKQJ ♣QJ East: ♠KJ ♥xxxx ♦xxxxx ♣AK

South: ♠xxxxx ♥xxxx ♦xxxx ♣–

The bidding: 4NT, pass, 5♦, pass, 6NT, pass, pass, 7♠, dbl, all pass.

The play: West ♦, ♠, ♦, ♦; North ♣, ♠J (!), ♠ (a cunning underruff
laid on the table to obscure the club convinces West that a spade was led),
♠Q (!); West ♦, ♠, ♦, ♦; North ♣, ♠K (!), ♠, ♠A (!); West ♣, ♣, ♣, ♠.
At this point the revokes at trick 2 (not to mention trick 4) are exposed.
South ♦, ♦, ♠, ♦; North ♣, ♣, ♠, ♣; South ♦, ♦, ♠, ♦; North & South
get the rest, 11 tricks plus 2 transferred for the revoke, 7♠× made.
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