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Bricks
Kira Bhana and Tony Forbes
Given a supply of 1× 2× 6 bricks, try packing 42 of them into an 8× 8× 8
cube, a task which should not give you too much trouble. Or maybe you
can pack 28 of these things into a 7×7×7 cube—or prove that it cannot be
done. More generally, what we are really after is the answer to the question:

What is the maximum number of 1 × 2 × 6 bricks that you can
pack into an n× n× n cube, n = 4, 5, 6, . . . ?

In the table we give some upper and lower bounds. Observe that when n is
even the maximum packing number is determined exactly—the upper and
lower bounds are the same.

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

bn3/12c 5 10 18 28 42 60 83 110 144 183 228 281 341 409 486 571
unused 4 5 0 7 8 9 4 11 0 1 8 3 4 5 0 7

upper bound 0 2 18 28 42 60 82 110 144 183 228 280 340 409 486 571
unused 64 101 0 7 8 9 16 11 0 1 8 15 16 5 0 7

lower bound 0 2 18 27 42 57 82 108 144 180 228 276 340 405 486 567
unused 64 101 0 19 8 45 16 35 0 37 8 63 16 53 0 55

The ‘unused’ lines indicate how many holes are left unfilled by the possibly
hypothetical packing. The lower bounds are obtained as follows.

n = 6k Left for the reader.

n = 6k+2 Lay 3k2 +2k bricks flat on an n×n square to leave a 2×2
hole in a corner. Pile n of these structures vertically and drop 2k bricks
into the 2× 2× n hole:

n(3k2 + 2k) + 2k =
n3 − 8

12
=

⌊
n3

12

⌋
bricks,

best possible.

n = 4 Left for the reader.

n = 6k+ 4 ≥ 10 Lay 8k bricks flat to make a wall 4 units thick that
encloses an (n−8)× (n−8) square region. If n > 10, apply the first part of
the 6(k− 1) + 2 construction to the region. Thus an n×n square is covered
except for a 2 × 2 hole. Pile n of these structures vertically and drop 2k
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bricks into the 2× 2× n hole:

n(n2 − 4)

12
+ 2k =

n3 − 16

12
=

⌊
n3

12

⌋
− 1 bricks,

leaving a volume of 16 unoccupied.

Since 16 exceeds the volume of a brick by 4, it is tempting to suggest
that perhaps there is some smart arrangement which accommodates one
extra. However, no such packing exists; bn3/12c − 1 is best possible, as we
shall prove in Theorem 1, below.

n = 5 See Problem 315.1 on page 11.

Odd n ≥ 7 Take the arrangement for the (n−1)×(n−1)×(n−1) cube
and clad three mutually orthogonal faces with as many bricks as possible.
Thus, for example, 18 + 3 · 3 = 27 for n = 7, and 42 + 3 · 5 = 57 for n = 9.

In some cases we can improve on this construction.

n = 11 Use 20 bricks to build a wall 2 units high and 5 units thick
that encloses a 1× 1× 2 hole. Pile five of these structures vertically and lay
eight bricks on top: 5 · 20 + 8 = 108 bricks.

n = 15 See Theorem 2, below.

n = 17 Use 40 bricks to build a wall 2 units high and 5 units thick
that encloses a 7× 7× 2 hole into which place eight more bricks. Pile eight
of these structures vertically and lay 21 bricks on top: 8 · 48 + 21 = 405
bricks.

The reader is invited to reduce the gaps between the lower and upper
bounds given for odd n in the table.

Also, we would be very interested in the smallest k for which you can
put 18k3 + 9k2 + 1 bricks in a (6k+ 1)× (6k+ 1)× (6k+ 1) cube. To show
that this is a sensible request, put k = 10, say. The construction described
above involving the cladding of three faces of a 60×60×60 cube uses 18900
bricks and leaves an unused volume of 181, quite a lot more than sufficient
for one extra brick.

If it helps, there is a child’s toy marketed under the name Tumbling
Tower that consists of fifty-four 1 × 2 × 6 bricks neatly fashioned out of
wood and packaged in a 6× 6× 18 cardboard and plastic box. Although we
suspect its intended purpose is not to investigate the filling of cubical bins
with small cuboids, we did actually find it useful.

Finally, we have the following results, which show that the trivial upper
bound cannot be attained for n ≡ 4 (mod 6) and n ≡ 3 (mod 12).
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Theorem 1 Let k be a positive integer and let n = 6k + 4. The maximum
number of 1 × 2 × 6 bricks that you can pack into an n × n × n cube is
bn3/12c − 1.

Proof We have already shown how to pack the n × n × n cube with
bn3/12c − 1 bricks. So we only need to prove that bn3/12c is impossible.

We think it is safe to assume that a brick in the packing must be ori-
entated so that each of its six faces lies on one of the 3(n + 1) grid-planes
that partition the cube into n3 subcubes.

The proof involves polynomials in three complex variables. It might be
helpful to follow the argument with n = 10.

Let the cube occupy [0, n] × [0, n] × [0, n] in Euclidean 3-dimensional
space, and suppose it is packed with bn3/12c bricks to leave four of its
subcubes unoccupied. The location of a compact set of points S is the
(a, b, c) ∈ S that minimizes each of the coordinates a, b and c.

Associate a subcube located at (a, b, c) with the polynomial xaybzc,
where x, y and z are complex variables. Then the sum of the n3 polynomials
associated with the n3 subcubes is

C(x, y, z) =

n−1∑
a=0

n−1∑
b=0

n−1∑
c=0

xaybzc.

A brick located at (a, b, c) is represented by a polynomial

xaybzcBj(x, y, z),

where Bj(x, y, z), j ∈ {1, 2, . . . , 6} is one of

B1(x, y, z) = (1 + x+ x2 + x3 + x4 + x5)(1 + y),

B2(x, y, z) = (1 + x+ x2 + x3 + x4 + x5)(1 + z),

B3(x, y, z) = (1 + y + y2 + y3 + y4 + y5)(1 + x),

B4(x, y, z) = (1 + y + y2 + y3 + y4 + y5)(1 + z),

B5(x, y, z) = (1 + z + z2 + z3 + z4 + z5)(1 + x),

B6(x, y, z) = (1 + z + z2 + z3 + z4 + z5)(1 + y),

depending on the orientation of the brick in the cube. For example,
B6(x, y, z) corresponds to a brick standing upright with its side of length 2
in the direction of the y-axis. The polynomial represents the 12 subcubes oc-
cupied by the brick, on the assumption that it is located at (0, 0, 0). Shifting
the brick to (a, b, c) corresponds to multiplying B6(x, y, z) by xaybzc.
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The sum of the polynomials associated with the bricks in the packing is

B(x, y, z) =

6∑
j=1

Pj(x, y, z)Bj(x, y, z)

for some polynomials P1(x, y, z), P2(x, y, z), . . . , P6(x, y, z). Thus B(x, y, z)
is the sum of bn3/12c expressions of the form xaybzcBj(x, y, z) for various
(a, b, c) and various j ∈ {1, 2, . . . , 6}.

But there are also four points corresponding to the unused subcubes.
Assuming they occur at distinct locations

(a1, b1, c1), (a2, b2, c2), (a3, b3, c3), (a4, b4, c4),

the sum of their associated polynomials is

U(x, y, z) =

4∑
h=1

xahybhzch .

Note that U(x, y, z) depends on the parameters ah, bh, ch.

For the assumed packing, there must exist polynomials P1(x, y, z),
P2(x, y, z), . . . , P6(x, y, z) and point coordinates ah, bh, ch ∈ {0, 1, . . . , n −
1}, h = 1, 2, 3, 4, such that

C(x, y, z) = B(x, y, z) + U(x, y, z) for all complex x, y, z. (1)

Now for the clever part. Put

x = y = z = ρ =
1

2
+

√
3 i

2
,

a primitive 6th root of 1. Then, observing that 1+ρ+ρ2 +ρ3 +ρ4 +ρ5 = 0,
we have

C(ρ, ρ, ρ) =

n−1∑
a=0

n−1∑
b=0

n−1∑
c=0

ρaρbρc =
(
1 + ρ+ ρ2 + · · ·+ ρn−1

)3
=
(
1 + ρ+ ρ2 + ρ3

)3
= − 3

√
3 i

and
B(ρ, ρ, ρ) = 0 for every choice of the polynomials Pj .
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We have annihilated the bricks—so we do not have to worry about where
they are. To deal with the unused part, we see that

U(ρ, ρ, ρ) =

4∑
h=1

ρahρbhρch

is the sum of four powers of ρ and therefore cannot have absolute value
greater than 4. However |C(ρ, ρ, ρ)| = 3

√
3 > 5. Hence for any choice of

(ah, bh, ch), h = 1, 2, 3, 4, we have U(ρ, ρ, ρ) 6= C(ρ, ρ, ρ) and, recalling that
B(ρ, ρ, ρ) = 0,

C(ρ, ρ, ρ) 6= B(ρ, ρ, ρ) + U(ρ, ρ, ρ),

contradicting (1). �

Theorem 2 Let k be a positive integer and let n = 12k + 3. You cannot
pack bn3/12c 1× 2× 6 bricks into an n× n× n cube.

Proof Assume the cube occupies [0, n]× [0, n]× [0, n] and it is packed with
bn3/12c bricks to leave three of its subcubes unoccupied.

We employ the same method as in Theorem 1. With C(x, y, z),
B(x, y, z) and U(x, y, z) defined as before,

C(ρ, ρ, ρ) =

n−1∑
a=0

n−1∑
b=0

n−1∑
c=0

ρaρbρc

=
(
1 + ρ+ ρ2 + · · ·+ ρ12k+2

)3
=
(
1 + ρ+ ρ2

)3
= − 8,

B(ρ, ρ, ρ) = 0,

U(ρ, ρ, ρ) =

3∑
h=1

ρahρbhρch ,

where ρ = 1/2 +
√

3 i/2 and each of ah, bh, ch, h = 1, 2, 3, can take any
value in {0, 1, . . . , n− 1}. But for any choice of these parameters,

|U(ρ, ρ, ρ)| ≤ 3 < 8 = |C(ρ, ρ, ρ)|.

Hence
C(ρ, ρ, ρ) 6= B(ρ, ρ, ρ) + U(ρ, ρ, ρ)

and therefore the packing does not exist. �
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Solution 312.6 – 53 bricks
You cannot fit 54 1 × 1 × 4 bricks into a 6 × 6 × 6 box. If you
can devise a simple proof, we would like to see it. What about
53 bricks?

Tony Forbes
We show that you cannot pack 53 bricks into a 6 × 6 × 6 cube. There is
actually an easy way to prove this by partitioning the cube into 27 coloured
2×2×2 subcubes. However, in my opinion the somewhat more complicated
proof I offer, which is similar to that of Theorem 1 on page 3, is far too
interesting to be ignored. We might as well deal with the general case where
the cube has side congruent to 2 modulo 4.

Theorem 1 You cannot pack (4m+ 2)3/4− 1 bricks of size 1× 1× 4 into
a (4m+ 2)× (4m+ 2)× (4m+ 2) cube.

Proof Position the cube to occupy [0, 4m+ 2]× [0, 4m+ 2]× [0, 4m+ 2] in
Euclidean 3-dimensional space. Suppose (4m+ 2)3/4− 1 bricks are packed
in the cube to leave 4 units unoccupied.

A point (a, b, c) is represented by the monomial expression xaybzc in
variables x, y, z, The whole cube is represented by the polynomial

C(x, y, z) =

4m+1∑
a=0

4m+1∑
b=0

4m+1∑
c=0

xaybzc.

A brick polynomial is one of

B1(x, y, z) = 1 + x+ x2 + x3,

B2(x, y, z) = 1 + y + y2 + y3,

B3(x, y, z) = 1 + z + z2 + z3,

depending on its orientation. The bricks in the packing are represented by

B(x, y, z) =

3∑
r=1

Pr(x, y, z)Br(x, y, z),

where P1(x, y, z), P2(x, y, z) and P3(x, y, z) are polynomials. The polyno-
mial representing the holes at (ah, bh, ch), h = 1, 2, 3, 4, is

U(x, y, z) =

4∑
h=1

xahybhzch .
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For the supposed packing, there must exist polynomials Pr(x, y, z), r ∈ {1,
2, 3}, and point coordinates ah, bh, ch ∈ {0, 1, . . . , 4m + 1}, h = 1, 2, 3, 4,
such that

C(x, y, z) = B(x, y, z) + U(x, y, z) for all x, y, z ∈ H, (1)

where H is the ring of quaternions.

We represent a quaternion by an expression of the form α+βi+γj+δk,
where α, β, γ, δ are real numbers and i, j and k are the basis elements.
Addition is performed by doing each component separately:

α1+β1i+ γ1j + δ1k + α2 + β2i+ γ2j + δ2k

= (α1 + α2) + (β1 + β2)i+ (γ1 + γ2)j + (δ1 + δ2)k.

Multiplication is done in the usual way,

(α1 + β1i+γ1j + δ1k)(α2 + β2i+ γ2j + δ2k)

= α1α2 + α1β2i+ α1γ2j + α1δ2k

+ β1α2i+ β1β2ii+ β1γ2ij + β1δ2ik

+ γ1α2j + γ1β2ji+ γ1γ2jj + γ1δ2jk

+ δ1α2k + δ1β2ki+ δ1γ2kj + δ1δ2kk,

which is then simplified by Table 1. Using Table 1, we see that B1(i, j, k) =
B2(i, j, k) = B3(i, j, k) = 0 and therefore

B(i, j, k) = 0. (2)

Also

C(i, j, k) =

4m+1∑
a=0

4m+1∑
b=0

4m+1∑
c=0

iajbkc

= (1 + i)(1 + j)(1 + k) = (1 + i+ j + k)(1 + k)

= 1 + i+ j + k + k − j + i− 1 = 2i+ 2k. (3)

Table 1: Quaternion multiplication

× 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1
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Table 2: Hole coordinates

a mod 2 0 0 0 0 1 1 1 1
b mod 2 0 0 1 1 0 0 1 1
c mod 2 0 1 0 1 0 1 0 1

iajbkc ±1 ±k ±j ±i ±i ±j ±k ±1

Now consider the holes. We have

U(i, j, k) =

4∑
h=1

iahjbhkch .

Apart from a plus or minus sign, iajbkc depends only on the parities of the
coordinates (a, b, c) as indicated in Table 2, which clearly shows that each
term of U(i, j, k) must be one of the eight elements of the set

R = {1,−1, i,−i, j,−j, k,−k}.

For (1) to be satisfied, we must have

U(i, j, k) = 2i+ 2k. (4)

by (2) and (3). The only way to make this quantity from four elements of
R, is i+ i+ k + k, and we may assume without loss of generality that

ia1jb1kc1 = ia2jb2kc2 = i, ia3jb3kc3 = ia4jb4kc4 = k.

Therefore

(a1, b1, c1), (a2, b2, c2) ≡ (0, 1, 1) or (1, 0, 0) (mod 2),

(a3, b3, c3), (a4, b4, c4) ≡ (0, 0, 1) or (1, 1, 0) (mod 2).

Now remove the bricks, reflect them in the plane x = y and return them to
the cube. The hole that previously occupied position (ah, bh, ch) is now at
(bh, ah, ch), h = 1, 2, 3, 4. But then

(b1, a1, c1), (b2, a2, c2) ≡ (0, 1, 0) or (1, 0, 1) (mod 2),

(b3, a3, c3), (b4, a4, c4) ≡ (0, 0, 1) or (1, 1, 0) (mod 2),

and it follows that

ib1ja1kc1 = ±j, ib2ja2kc2 = ±j, ib3ja3kc3 = ±k, ib4ja4kc1 = ±k,

which contradicts (4). �
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What makes this proof work seems to be the non-symmetry of (3) under
permutations of i, j and k. For instance, putting x = j and y = i gives

C(j, i, k) = (1 + j)(1 + i)(1 + k) = (1 + i+ j − k)(1 + k) = 2 + 2i,

and again we can get a contradiction by a suitable transformation of the
bricks.

As can be seen from the results summarized in the table below, for
the general problem of finding optimal packings of 1 × 1 × 4 bricks in n-
sided cubes, the only case where the trivial upper bound is not attained is
n ≡ 2 (mod 4).

Cube side, n Maximum number of bricks Holes

n = 0, 1, 2, 3 0 n3

n ≡ 0 (mod 4), n ≥ 4 n3/4 0
n ≡ 1 (mod 4), n ≥ 5 bn3/4c 1
n ≡ 2 (mod 4) n3/4− 2 8
n ≡ 3 (mod 4), n ≥ 7 bn3/4c 3
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Sums involving tangents

Tommy Moorhouse

In M500 312 David Sixsmith poses a question about the convergence of
certain series involving tangents, such as

tp =

∞∑
n=1

tann

np

where p is an integer. My intention here is to consider in a ‘hand waving’ way
the convergence of such sums, using elementary results from number theory
and analysis. It strikes me that a central obstruction to convergence is the
fact that tan is periodic on the real axis and diverges at n = (2k + 1)π/2
for integer k. Let’s consider this first.

Dirichlet’s approximation theorem Dirichlet proved that any irra-
tional number θ can be approximated arbitrarily closely by rational num-
bers. There is a pleasing proof of this theorem in [Apostol] and the conclu-
sion is that given ε > 0 there are integers h and k (which can be chosen to
be relatively prime) such that |h−kθ| < ε. This means that the fraction h/k
can be made as close as we like to θ, and since ε can be made arbitrarily
small we see from the case θ = π/2 that tan(h) can be made arbitrarily
large by a judicious choice of h.

The case t1 Dirichlet’s theorem does not seem to help us immediately.
How large does h have to be to get a large value of tan(h)? How dense are
the relevant values of h among the integers? Dirichlet’s theorem does not
give a value for h, although it can be re-expressed in the following form to
give some information about k:

|h− kθ| < 1

k
.

It would be useful to find a pair (h, k) with ‘small’ k close to saturating the
inequality, and this can be done by appealing to the theory of continued
fractions (see [Burton] for an introduction). Specifically, it can be shown
that if Cn = pn/qn is one of the convergents of θ arising from its continued
fraction then

|pn − qnθ| <
1

qn

and any other pair (h, k) satisfying this bound has k > qn. We can use this
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to show that t1 does not converge. For consider the subseries∑
pn

tan(pn)

pn

where pn is the numerator of a convergent with denominator qn odd. Each
term tan(pn) is close to

tan

(
qnπ

2
+

1

qn

)
≥ qn −

1

qn
> qn − 1

and so
tan(pn)

pn
>

qn
pn
− 1

pn
=

2

π
−O

(
1

qn

)
.

There are infinitely many such terms (I think!), which means that tp has a
divergent subsequence and so is not convergent.

Thoughts on the general case Some of the standard tests for conver-
gence depend on knowledge of the size of successive terms in the sequence
being summed, and in this case the question is complicated by the unpre-
dictability of tan(n). While the case t1 has been resolved (in outline at
least) it isn’t clear that we can use a similar method to decide the other tp.

References

[Apostol] Tom Apostol, Modular Functions and Dirichlet Series in Number
Theory, 2nd Ed., Springer, 1990, Chapter 7.

[Burton] David Burton, Elementary Number Theory, 3rd Ed., McGraw Hill,
1995.

Problem 315.1 – Rectangles in a square
Tony Forbes
How many 1× (n+ 1) rectangles can you fit in an n× n square?

Obviously fitting any at all might be a bit difficult when n = 1 or 2.
But as n increases the difference between n and

√
2n becomes more and

more significant. There is I think a crossover point at

n =
2√

2− 1
= 4.8284,

where you can just squeeze in one (n+ 1)× 1 rectangle along the diagonal.
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Solution 311.5 – Colours and shapes
There are 9 objects. They could be a child’s bricks, but their
exact nature need not concern us. Each has one of 3 colours,
{red, blue, green} say, and one of 3 shapes, {triangle, square,
pentagon}. All 9 distinct combinations are represented. They
are to be arranged in a circle such that two adjacent objects
differ in colour or in shape but not both and not neither. For
example,

(R3, R4, R5, B5, B3, B4, G4, G5, G3).
How many ways?

Ted Gore
The possible combinations of colour and shape can be represented as a two
dimensional grid.

3 4 5
R a b c
B d e f
G g h i

I have added labels a, b, . . . , i to generalise the question and to simplify
notation. Using the arrangement of rows and columns above, the example
in the question would translate to abcfdehig.

The rules ensure that we can move from square to square only in a
horizontal or vertical direction, similar to the movement of a rook on a
chessboard. We can place the first term of the ring in square a. This is the
starting point and end point of the ring.

From a, the first move can only be to one of {b, c, d, g} and the last
move must be to a from a different member of the same set.

I will use b and d as an example. A path from b to d is a sequence of
moves conforming to the rules. A path from d to b is the same as a path
from b to d.

If C is the number of colours and S the number of shapes, there will be

(C + S − 2)(C + S − 3)

2

starting/ending pairs (six for the 3× 3 grid).

Let the set

Qb,d = {b, c, d, e, f, g, h, i} \ {b, d} = {c, e, f, g, h, i}.
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For the 3× 3 grid, there are six such sets. Then the sequence b followed by
a permutation from Qb,d followed by d is a path from b to d if each move in
the sequence is valid.

Each of these paths, preceded by a move from a and succeeded by a
move back to a, constitutes a Hamiltonian cycle.

Let P (x, y) be the number of paths from x to y.

The following results were produced by a computer program checking
all possible valid paths. For the 3× 3 grid,

P (b, c) = P (b, d) = P (b, g) = P (c, d) = P (c, g) = P (d, g) = 8

so that the total number of paths is 48.

Adding a further colour (Y ) and further squares {j, k,m} to make a
4× 3 grid with 10 starting/ending pairs gives these results:

P (b, c) = 180,

P (b, d) = P (b, g) = P (b, j) = P (c, d) = P (c, g) = P (c, j) = 156,

P (d, g) = P (d, j) = P (g, j) = 150,

to give a total of 1566.

From the results for the 3× 3 and 4× 3 grids it appears that P (x, y) is
the same for all pairs that start and end on the first row, is the same for all
pairs that start and end on the first column, and is the same for all pairs
that start on one axis and end on the other, so that swapping two rows or
two columns does not change the total number of paths.

In order to answer the question we need to find the number of ways to
map the colour/shape combinations onto the grid.

If we count the path from x to y as two colour/shape sequences (from
x to y and also y to x) then we need to take twice the number of paths.

Additionally we should take into account the sequences that arise from
changing the order of rows and columns.

There are C! ways to order the rows and S! ways to order the columns.

If T is the total number of paths through a grid for C colours and S
shapes (48 for 3×3 and 1566 for 4×3) then the number of rings is 2TC!S!.
For the 3× 3 grid this gives 3456 rings and for the 4× 3 grid 451008.

An important step in the solution is to find the number of Hamiltonian
cycles in the given grid. This is the term T in the equation above.

I had not found a way to do this except by examining every permutation
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of moves for validity, a procedure that my computer could not realise in a
reasonable time for any grid greater than the 4× 3.

While searching for a formula for the number of cycles I found a
Wikipedia article for ‘rook’s graph’. The article states that for an n ×m
chessboard, the rook’s graph is the Cartesian product Kn�Km.

My thanks to TF for providing the following results.

(n,m) (n, 1) (2,2) (3,2) (3,3) (4,2) (4,3) (4,4) (5,2) (5,3) (6,2)

Hamil-
tonian
cycles

⌊
(n− 1)!

2

⌋
1 3 48 30 1566 284112 480 126120 12000

TF subsequently found this formula for the number of Hamiltonian cycles
in rook(n, 2):

1

2

bn/2c∑
k=1

(
n− k − 1

k − 1

)
n! (n− k − 1)!

k!
.

Without the half, it is the generator of entry A089039 in The On-Line
Encyclopedia of Integer Sequences, where it is described as ‘The number
of circular permutations of 2n people consisting of n married couples, such
that no one sits next to a person of the opposite sex who is not his or her
spouse.’ For example, there are 430920 Hamiltonian cycles for rook(7,2).
He also found the following values for rook(n, 3) from the OEIS database:

1, 3, 48, 1566, 126120, 18153720, 4357332000, 1619499374640,

883124275824000, 677267024315091840, 706022078404964428800,

972890835488032591468800, 1731258722423272253052441600,

3900512495412914495014418918400, . . . .

However, it seems that apart from (n, 1) and (n, 2) there is no general
formula for (n,m).

Problem 315.2 – Points
Graham Lovegrove
Given n points in the Euclidean plane, must there exist three of them that
define a triangle with an angle in the range [180 − 360/n, 180] degrees?
Note that the lower bound is attained whenever the points are the vertices
of a regular n-gon.
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Solution 309.7 – Limit
Show that

x sin y − y sinx

x cos y − y cosx
→ tan(x− arctanx) as y → x.

Peter Fletcher
Let the given expression be M and let y = x+ h. Then

M =
x sin(x+ h)− (x+ h) sin(x)

x cos(x+ h)− (x+ h) cos(x)

=
x sin(x) cos(h) + x cos(x) sin(h)− (x+ h) sin(x)

x cos(x) cos(h)− x sin(x) sin(h)− (x+ h) cos(x)

=
(1− h2

2! +· · · )x sin(x)+(h− h3

3! +· · · )x cos(x)−(x+h) sin(x)

(1− h2

2! +· · · )x cos(x)−(h− h3

3! +· · · )x sin(x)−(x+h) cos(x)

=
(−h2

2! + h4

4! −· · · )x sin(x) + (h− h3

3! +· · · )x cos(x)− h sin(x)

(−h2

2! + h4

4! −· · · )x cos(x)− (h− h3

3! +· · · )x sin(x)− h cos(x)
.

Now we divide top and bottom by h,

M =
(− h

2! +
h3

4! −· · · )x sin(x) + (1− h2

3! +· · · )x cos(x)− sin(x)

(− h
2! +

h3

4! −· · · )x cos(x)− (1− h2

3! +· · · )x sin(x)− cos(x)
,

and let h→ 0,

L = lim
h→0

(M) =
x cos(x)− sin(x)

−x sin(x)− cos(x)
=

sin(x)− x cos(x)

cos(x) + x sin(x)
.

Now we divide the top and bottom of L by
√

1 + x2 to give

L =

1√
1 + x2

sin(x)− x√
1 + x2

cos(x)

1√
1 + x2

cos(x) +
x√

1 + x2
sin(x)

.

Let θ = arctan(x), so tan(θ) = x. This means sin(θ) = x/
√

1 + x2 and
cos(θ) = 1/

√
1 + x2 and

L =
sin(x) cos(θ)− cos(x) sin(θ)

cos(x) cos(θ) + sin(x) sin(θ)

=
sin(x− θ)
cos(x− θ)

= tan(x− θ) = tan(x− arctan(x)).
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Solution 313.3 – Tetrahedron
A tetrahedron has vertices A, B, C, D, and

∠BAD = ∠BAC = ∠CAD = 90◦.

Show that the face areas 4BCD, 4BAC, 4CAD and 4DAB
satisfy

(4BCD)2 = (4BAD)2 + (4BAC)2 + (4CAD)2.

Stuart Walmsley
The choice of labels for the vertices is changed so that certain equations
which occur in the solution can be expressed in their familiar form. Ex-
plicitly, the unique vertex A is replaced by D, so that the problem now
reads:

A tetrahedron with vertices A, B, C, D has angles

∠ADB = ∠ADC = ∠BDC = 90◦.

Show that the face areas 4ABC, 4ADB, 4ADC, 4BDC are
given by

(4ABC)2 = (4ADB)2 + (4ADC)2 + (4BDC)2.

Further, areas of triangles are most conveniently expressed in terms of the
lengths of their sides. Accordingly, the following choice is made:

AB = c, AC = b, BC = a,

AD = p, BD = q, CD = r.

Three of the triangles are right-angled. By Pythagoras, the lengths are
related:

a2 = q2 + r2, b2 = p2 + r2, c2 = p2 + q2

and the squares of the areas are

(4ADB)2 =
p2q2

4
, (4ADC)2 =

p2r2

4
, (4BDC)2 =

q2r2

4
.

In this way, the problem is to show that

(4ABC)2 =
1

4

(
p2q2 + p2r2 + q2r2

)
.
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No dimensions of the triangle ABC are specified. The basic formula for the
square of the area of a triangle is

1

4
(base× (perpendicular height))

2
.

For the triangle ABC with side lengths a, b, c, this can be shown to be, for
example,

(4ABC)2 =
1

4
a2b2 sin2 γ,

where γ is the included angle between a and b. This may be rewritten

(4ABC)2 =
1

4
a2b2

(
1− cos2 γ

)
.

From the cosine rule,

cos2 γ =

(
a2 + b2 − c2

)2
4a2b2

,

this becomes

(4ABC)2 =
1

16

(
4a2b2 − (a2 + b2 − c2)2

)
=

1

16

(
4a2b2 − (a4 + b4 + c4 + 2a2b2 − 2a2c2 − 2b2c2)

)
=

1

16

(
(2a2b2 + 2a2c2 + 2b2c2)− (a4 + b4 + c4)

)
=

1

16

(
4(a2b2 + a2c2 + b2c2)− (a2 + b2 + c2)2

)
.

Expanding in terms of p, q, r,

4(a2b2 + a2c2 + b2c2)

= 4
(
(q2 + r2)(p2 + r2) + (q2 + r2)(p2 + q2) + (p2 + r2)(p2 + q2)

)
= 4(p4 + q4 + r4) + 12(p2q2 + p2r2 + q2r2)

and (
a2 + b2 + c2

)2
= 4

(
p2 + q2 + r2

)2
= 4(p4 + q4 + r4) + 8(p2q2 + p2r2 + q2r2).

Then

4(a2b2 + a2c2 + b2c2)−
(
a2 + b2 + c2

)2
= 4(p2q2 + p2r2 + q2r2).
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And therefore

(4ABC)2 =
p2q2 + p2r2 + q2r2

4
,

which is the required result; that is,

(4ABC)2 = (4ADB)2 + (4ADC)2 + (4BDC)2,

or with the labels given in the original form of the problem, in which A and
D are interchanged:

(4BCD)2 = (4BAD)2 + (4BAC)2 + (4CAD)2.

Problem 315.3 – Cyclic polygon area
Tony Forbes
Show that for large n, the area of a cyclic polygon of n sides with lengths
e1, e2, . . . , en is given approximately by the formula

e

π

√√√√s4−nn

n∏
i=1

(sn − ei), where sn =
e1 + e2 + · · ·+ en

2
,

provided that the ei do not deviate too far from equality.

Observe that if e = π, this is Brahmagupta’s formula for the area of
a cyclic quadrilateral when n = 4 and when n = 3 it reduces to Heron’s
formula for triangles.

Problem 315.4 – Cylinder in a cube
What is the largest r such that a cylinder of radius r and length 6 will fit
in a cube of side 5?

Obviously this is one of an infinite number of similar problems. I (TF)
stumbled upon this particular instance while I was doing something else. It
interested me because the answer seems to be 1.0 or thereabouts.

Problem 315.5 – Convexity
There is a finite set of ordered pairs, S = {(xi, yi) : i = 1, 2, . . . , n}, say.
Find a simple test to determine whether the elements of S define the Carte-
sian coordinates of the vertices of a convex polygon.
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M500 Revision Weekend May 2023

Judith Furner

The 47th M500 Revision Weekend took place at Kents Hill Training
and Conference Centre over 12th – 14th May 2023. We ran 11 undergrad-
uate maths modules and five postgraduate maths modules. We ran one
Science module – SM380 – for the first time. We also provided a room for
a tutor group for students of M832 as no tutor was available. We had 161
students—of those 143 were residential and 18 non-residential. This was
an increase on 2022, and although we could have done with more it was
pleasing that there was an increase. There were 19 tutors, who were mostly
entirely satisfactory. There were seven M500 ‘staff’: Angela Allsopp, Paul
Cooper, Chris Furner, Judith Furner, Charlotte Connolly, Dorothy Leddy
and Milena Dragic. Once again we made a loss, although it was considerably
less than it was in 2022. Apart from anything else, the rail strike meant
that some tutors’ travel expenses were considerably higher. All feedback
was passed on to tutors, and an anonymised version was sent to students.

The feedback was very good—nearly all concerned clearly had an ex-
cellent weekend. We received 139 forms out of a potential 149. Paul and
Angela did a splendid job of delivering feedback forms to tutorial classes,
and retrieved them, along with the lanyards, from students on the Sunday
afternoon. If you came to the Weekend, and find that you managed to take
your lanyard home, I would be grateful if you would return it (the Revision
Weekend in May 2024 is an acceptable time).

Many of our tutors have been working with us for thirty or forty years,
and we pride ourselves on offering the best of the best to our students.
Nearly all students seemed to agree with our views. Of the 112 comments,
100 were ‘excellent’, 10 ‘good’ and 2 ‘average’. Comparisons are invidious,
but it is a great delight to see some tutors, year after year, being marked
‘excellent’ by 100 per cent of their tutees. Typical comments were ‘first-rate
tuition’, ‘great communication’, ‘pitched it at our level and speed’, ‘patient
and thorough with explanations’, ‘helped cement my understanding of more
tricky subjects’, ‘he was incredible, we were SO lucky to have him. Engag-
ing and fun. Get him back’, ‘very knowledgeable and experienced with
facilitation and also adaptable to the group’s needs. Lovely person too’,
‘hugely helpful, thanks very much’, ‘easy to follow. Good selection of ques-
tions and information on exam strategy’, ‘organised, well-prepared, clear
and supportive’, ‘great tutor. He got through all the material, answered all
our questions and was very focused on exam technique’.
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We were delighted that of the 111 responses to Weekend organization
on the feedback form, 98 were ‘excellent’, 10 ‘good’ and 3 ‘average’. I
am of course particularly interested in these last three, and the one who
commented said ‘Very patchy information, but a lot of it, quite confusing,
not enough clarity’. She/he did not give a name, which is a shame: I
am always keen to follow up such comments. Others were happy with the
information provided, so maybe it is horses for courses. Several students
said that they would be returning, which is always pleasing, and we were
asked ‘please don’t put another real life event online’ (my thought entirely).
Students said ‘it was lovely to meet other students’, and one of my favourite
comments was ‘overall I am very happy’.

Revision Weekend May 2023 – Feedback forms from students
Avg–

Excellent Good Average poor Poor Total

Tutors Number 100 10 2 0 0 112
Percent 89 9 2 0 0

Classrooms Number 35 41 22 4 3 105
Percent 33 39 21 4 3

Accommodation Number 39 38 20 4 4 105
Percent 37 36 19 4 4

Food and drink Number 38 55 12 5 0 110
Percent 35 50 11 5 0

Refreshments Number 25 21 10 0 1 57
Percent 44 37 18 0 2

Bar Number 15 22 11 2 0 50
Percent 30 44 22 4 0

Talk Number 12 8 1 0 0 21
Percent 57 38 5 0 0

Weekend Number 98 10 3 0 0 111
organization Percent 88 9 3 0 0

This is of course very much a team effort and I am reliant on the M500
team, who work so hard over the Weekend. They came in for much praise,
for being friendly, helpful and available. We were thanked for our ‘tremen-
dous service’ and some comments were ‘all the M500 and OU staff and
volunteers were extremely welcoming and friendly. They answered many
questions for me which could really only be asked in a face to face setting’,
‘Thank you Judith and all your helpers. I am already looking forward to
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next year’. Others appreciated the availability of the OU staff, handbooks
and other literature. One student said ‘Would have liked some quiz or other
collective activity on the Saturday evening (otherwise non-drinkers don’t go
to the bar and others may be shy)’.

The venue was generally appreciated, although there were many com-
ments about the temperature: too hot, too cold, impossible to change, win-
dows don’t open, and so on. Room temperature adjustment may be simple,
but as I pointed out to the venue, our delegates are mathematicians, not
engineers. There were only a few comments about lack of whiteboards (old
hands may remember this being an issue in the past). Students were gen-
erally pleased with the choice in the restaurant, although vegan food was
sometimes found to be lacking. It seems that people’s expectations vary
widely. There was universal criticism of the coffee provided at breaks, and
the fact that both snacks and milk ran out. The bar was less satisfactory:
the service was described as slow and expensive. Students were generally
united in their comments about the staff, typical was ‘all staff were brilliant
and polite’.

Dates for your diary The Winter Weekend takes place over the
12th – 14th January 2024, and the Revision Weekend over the 10th – 12th
May 2024. Both events take place at Kents Hill. The Winter Weekend is
essentially a fun weekend, where we enjoy all sorts of mathematical puzzles
and games, not to mention a certain amount of problem-solving and deep
thinking. Those of you who have ever been Mel’s tutees will be delighted to
hear that he will be doing a session for us. In January of this year he put a
list of six items on the board. We had so many digressions, questions, and
general discussion that when we were reluctantly called to supper we noticed
that we had only covered three of the six. “Jolly good,” said Mel, “That
will do us for next year.” Bookings are not yet open for these events, but
keep an eye on the M500 website (which is not always updated as quickly
as might be (note use of the passive voice)). It is, however, useful to have
the dates in your diary to ensure that you don’t inadvertently book another
event.

Problem 315.6 – Prism
Tamsin Forbes
Is it possible to determine the n of a regular n-sided prism from a single
side elevation parallel to a vertical face? Admittedly it might be difficult to
distinguish between n = 3 and n = 4, but what about larger n?
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Problem 315.7 – Sum
For r = 3, 4, . . . , show that

1

12 + (r − 1)2
+

1

(r + 1)2 + (2r − 1)2
+

1

(2r + 1)2 + (3r − 1)2
+ . . .

=
π

2(r − 2)r
tanh

(r − 2)π

2r
.

For example, when r = 3 this is
1

12 + 22
+

1

42 + 52
+

1

72 + 82
+ . . . .

Front cover Bricks, transparent, pile of; see page 1.


