
* ISSN 1350-8539

M500 316



The M500 Society and Officers

The M500 Society is a mathematical society for students, staff and friends of the
Open University. By publishing M500 and by organizing residential weekends, the
Society aims to promote a better understanding of mathematics, its applications
and its teaching. Web address: m500.org.uk.

The magazine M500 is published by the M500 Society six times a year. It
provides a forum for its readers’ mathematical interests. Neither the editors nor
the Open University necessarily agree with the contents.

The Revision Weekend is a residential Friday to Sunday event providing re-
vision and examination preparation for both undergraduate and postgraduate
students. For details, please go to the Society’s website.

The Winter Weekend is a residential Friday to Sunday event held each January
for mathematical recreation. For details, please go to the Society’s website.

Editor – Tony Forbes

Editorial Board – Jeremy Humphries

Advice for authors We welcome contributions to M500 on virtually anything
related to mathematics and at any level from trivia to serious research. Please
send material for publication to the Editor, above. We prefer an informal style
and we usually edit articles for clarity and mathematical presentation. For more
information, go to m500.org.uk/magazine/.

M500 Revision Weekend 2024 We are planning to run the Revision Weekend
in 2024 over 10th–12th May at Kents Hill Park, Milton Keynes. For further details
and an application form please check the website, or e-mail the Revision Weekend
Organizer, weekend@m500.org.uk.

m500.org.uk
m500.org.uk/magazine/


M500 316 Page 1

Lines in R3 and vector fields on S2: postscript

Tommy Moorhouse

Introduction In M500 313 I described vector fields on S2 derived from
sets of lines in R3. These fell into two broad classes, which I described, by
analogy, as electric and magnetic (although electromagnetism on S2 actually
takes a different form). I speculated on the existence of a duality between
the sets of lines leading to each type of field. Here the link is explained in
another way.

The link between the electric and magnetic fields Readers may have
noticed, or may wish to check, that rotating the electric field on S2 at each
point through π/2 radians anticlockwise leads to a field looking very much
like the magnetic field. In fact if we represent a tangent vector to the sphere
by the pair (~u,~v) ∈ S2×R3 we can quite naturally produce another tangent
vector (~u, J(~v)) ≡ (~u, ~u × ~v) at right angles to the first. Here, of course,
we consider the sphere to be embedded in R3 and the cross product is the
usual one. This construction defines an ‘almost complex structure’ on the
tangent space to S2, with J(J(~v)) = − ~v, and it makes sense to ask what
effect the operation of J has on the allowed set of lines giving rise to, say,
the electric field. We can show that the effect on the set of lines passing
through a point (the allowed set for the electric field) is to map those lines
to the odd-looking allowed set for the magnetic field presented previously,
as can be shown by a simple calculation.

Generate the electric field by taking the allowed set of lines through
~q = (0, 0, z0) ∈ R3. These lines are parametrised by t 7→ ~q + t~u where ~u is
a unit vector. Taking the base point for the vector ~v to be ~p = (0, 0, 0) our
construction gives rise to the vector

~v = (−u1u3z0,−u2u3z0, z0(1− u23))

on S2 at ~u, an electric field pointing from the north to the south of the
sphere. Now take the cross product to find J(~v) = ~u×~v = (u2z0,−u1z0, 0).

This gives a new vector field (~̂u, J(~v)) derived from a new allowed set of
lines. Taking the base point again to be (0, 0, 0) we have J(~v) ending at

(x, y, 0) = (u2z0,−u1z0, 0). Using the fact that |~̂u|2 = 1, we calculate ~̂u for
the allowed set of lines as

~̂u =
1

z0

(
−y, x,±

√
z20 − (x2 + y2)

)
.

This is just the set of unit tangent vectors to the allowed set of lines giving
rise to the magnetic field.
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Geodesics on the 2-sphere

Tommy Moorhouse

Introduction The geodesics on a 2-sphere, the set of points

{(x, y, z) ∈ R3 : x2 + y2 + z2 = 1},

are easy to visualise but not quite so easy to describe by explicit equations.
Here I will set out an alternative description not involving the solution
of differential equations except as a check. First a variational principle is
used to obtain the conventional geodesic equations, then the alternative
description is introduced.

Deriving the geodesic equations from a variational principle The
metric on the unit 2-sphere can be written in terms of the angular coordi-
nates ϑ and ϕ as

ds2 = dϑ2 + sin2 ϑdϕ2.

If we consider the distance function to be the action of the system in terms
of the dynamical variables ϑ and ϕ we can write

L = ϑ̇2 + sin2 ϑϕ̇2.

We write ϕ and ϑ for xµ in turn in the variational equation

d

dt

(
∂L

∂ẋµ

)
− ∂L

∂xµ
= 0,

finding

d

dt

(
ϕ̇ sin2 ϑ

)
= 0,

ϑ̈− sinϑ cosϑϕ̇2 = 0.

Expanding the derivatives if required we can read off the Christoffel coeffi-
cients from the geodesic equation

ẍµ + Γµνρẋ
ν ẋρ = 0.

For example
Γϑϕϕ = − sinϑ cosϑ.
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While it is possible to obtain expressions for the geodesics in this way there
is a different, more intuitive approach. We know that geodesics take the
shortest path between two given points. On the sphere these paths are the
great circles, which are the intersections of the sphere centred on the origin
with oriented planes through the origin.

Parametrised geodesics We will describe a geodesic using the intersec-
tion of any plane through the origin with the sphere. Choose two orthonor-
mal unit 3-vectors ~u and ~v spanning the plane and form the curve

cosω(t)~u+ sinω(t)~v.

This is a curve following the path of the geodesic described by the
plane. It can thus be described by the usual coordinates on the 2-sphere
(cosϑ, sinϑ cosϕ, sinϑ sinϕ). This means that

cosϑ = u1 cosω + v1 sinω,

sinϑ cosϕ = u2 cosω + v2 sinω,

sinϑ sinϕ = u3 cosω + v3 sinω.

Readers may wish to check that these expressions are consistent (e.g. that
cos2 θ+ sin2 θ = 1) using the orthonormality of the set {~u,~v}. From this we
have

ϑ = arccos(u1 cosω + v1 sinω),

ϕ = arctan

(
u3 cosω + v3 sinω

u2 cosω + v2 sinω

)
.

By differentiating these expressions and substituting into the geodesic equa-
tions it is possible to show that the curve is a geodesic provided that ω̈ = 0.
This follows from the equation for ϕ, with that for θ then being satisfied
identically. It is an interesting (dare I say fun?) exercise to work through
the calculation. Thus, to specify a geodesic, choose a constant a and set
ω(t) = at, choose two orthonormal 3-vectors based at the origin and substi-
tute into the equations for ϑ and ϕ.

Conclusion This description of the solutions to the geodesic equations on
S2 in terms of two orthogonal unit vectors hopefully provides a satisfying
explanation of the slightly complicated expressions for ϑ and ϕ normally
encountered. This approach may generalise to geodesics on other manifolds
such as S3, which at face value are much more complicated to describe.
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Geodesics on the 3-sphere

Tommy Moorhouse

Introduction The 3-sphere S3 can be embedded in R4 as the set of points
(x, y, z, w) satisfying x2 + y2 + z2 + w2 = 1. It is three dimensional and so
any point can be specified using three angular variables analogous to the
two used on the 2-sphere S2. By analogy with the 2-sphere we can describe
the path of a geodesic in terms of two independent 4-vectors ~u and ~v, to
be discussed below. An orientation can be defined on R4 so that geodesics
can be consistently assigned a direction, but we will not make explicit use
of this here. A geodesic path is the set of points that the geodesic passes
through.

The geodesic equations Here the points on S3 are parametrised as

(p1, p2, p3, p4) = (cosχ, sinχ cosϑ, sinχ sinϑ cosϕ, sinχ sinϑ sinϕ).

The geodesic equations following from the metric

ds2 = dχ2 + sin2 χ
(
dϑ2 + sin2 ϑdϕ2

)
are

d

dt
(ϕ̇ sin2 χ sin2 ϑ) = 0,

d

dt

(
ϑ̇ sin2 χ

)
− ϕ̇2 sin2 χ sinϑ cosϑ = 0,

χ̈− sinχ cosχ
(
ϑ̇2 + ϕ̇2 sin2 ϑ

)
= 0.

It is possible, with some effort, to find a general expression for the geodesics.
However, intuition tells us that the geodesics are one-dimensional paths on
the surface of a 4-dimensional ball, and the intersection of planes with the
3-sphere should lead us to a solution.

The parametrised geodesics In R4 the natural analogue of a plane is a
hyperplane through the origin, which is three dimensional. This meets S3

in a two dimensional surface, which is not what we need. We can, however,
take a two dimensional plane subspace of R4 and consider the curve given
by

γ(t) = ~u cosω(t) + ~v sinω(t)

where the orthogonal unit 4-vectors ~u and ~v span the plane. We can check
that γ(t) lies on S3 so that it is a candidate geodesic. The coordinates of
points on the geodesic can be found from
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cosχ = u1 cosω + v1 sinω,

sinχ cosϑ = u2 cosω + v2 sinω,

sinχ sinϑ cosϕ = u3 cosω + v3 sinω,

sinχ sinϑ sinϕ = u4 cosω + v4 sinω.

We can readily deduce expressions for each angular variable in terms of
inverse trigonometric functions of the components of ~u and ~v. Substituting
into the geodesic equations we find that provided ω̈(t) = 0 these curves
are geodesics. We can take ω(t) = t, for example. Readers may object
that we have not demonstrated that all the geodesics arise in this way,
and this will be touched on below. We should also remark that the choice
of the orthonormal pair {~u, ~v} is not unique. A different choice with the
same orientation, however, simply corresponds to a reparametrisation of the
geodesic by t 7→ t+ t0.

Some pairs of geodesics never meet In contrast to the geodesics on
S2 we can find pairs of geodesics that do not meet. For example the plane
spanned by ~u = (0, 0, 0, 1) and ~v = (0, 0, 1, 0) only meets the plane spanned
by ~w = (1, 0, 0, 0) and ~z = (0, 1, 0, 0) in a single point, so geodesics in these
planes do not meet. In fact every plane defined by a pair of vectors in R4

has a ‘dual’ plane which it meets in a single point, so every geodesic has a
dual geodesic which it does not meet.

Geodesics through a point meet again The geodesic paths through a
point p of S3 spread out through a 2-sphere surrounding the point and refo-
cus at −p. To establish this we use the parametrisation γ(t) = ~p cos t+~v sin t.
We may as well take the point p = (1, 0, 0, 0) ∈ S3 using the symmetries of
S3. We require that ~p · ~v = 0, and a general expression for ~v is therefore a
parametrisation of the 2-sphere such as (0, cos θ, sin θ sinφ, sin θ cosφ). Each
point of this 2-sphere defines a geodesic path through p, and it is clear that
these paths meet again when t = π. One could perhaps adapt this argument
using the manifold structure (i.e. the fact that S3 looks like R3 close to p)
to show that the geodesic paths are all of the form we have found.

Conclusion Visualising geodesic paths on S3 poses challenges, especially
if we start from the Euler-Lagrange equations. However, a bit of intuition
has allowed us to find and characterise them and even start to explore some
of their properties. A useful tool is projection onto R3 from a point of S3

and interested readers might enjoy looking into this.
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Solution 313.5 – Integers
For which x is

√
24x+ 1 an integer?

Peter Fletcher

If we try x = 0, 1, 2, . . . in the given expression, we soon get a list of values
for which

√
24x+ 1 is an integer:

x = 0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100, 117, . . . .

It’s not obvious what sort of formula would generate this list, but if we put
these numbers in the search box of the The On-Line Encyclopedia of Integer
Sequences (https://oeis.org/), we soon find that the x’s are generalized
pentagonal numbers.

Recall that ‘small’ pentagonal numbers are very simply calculated thus
(image from Wikipedia):

P1 = 1 P2 = 5 P3 = 12 P4 = 22

The dots that comprise Pq above may be split into a triangle and a rectangle,
which leads to

Pq =
q(q + 1)

2
+ q(q − 1)

for positive q.

If, however, we include negative q in the equation for Pq in the order

q = 0,+1,−1,+2,−2,+3,−3, . . .

we get generalised pentagonal numbers x in ascending order, as we calculated
above.

https://oeis.org/
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Ken Greatrix

At last, a problem that my age-weary bones can manage!

Following the procedure we had at summer school for M101 (the maths
foundation course that was current then), I first tried a few integers in the
relationship to see what resulted. I assumed that x should take an integer-
value and the results were:

If x took values of 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, . . . this
results in integer-values of 5, 7, 11, 13, 17,19, 23, 25, 29, 31, . . .
respectively.

I then noticed a pattern was emerging; the results seemed to be following
6n± 1 and I also noticed that values of x came in pairs separated by n.

Values of 6n + 3 did not appear in this list; so to investigate further I
worked the relationship backwards from these values of n. At this stage,
other than the relationship between pairs of x noted above I didn’t know
which values of x would fit the problem.

Let z represent the function then

z =
√

24x+ 1.

By rearranging this for x we get

x =
(z2 − 1)

24
.

So if z takes a value of 6n± 1 then

x =
(36n2 ± 12n)

24
.

When a value of z = 6n ± 1 is considered for even values of n, then this
expression can be rewritten as

x = 72
n2

2
± 24

n

2
,

which can be divided by 24 to give a pair of integer-values for x.

But if we consider odd values of n, the expression can now be rewritten
as

x = 72
(n2 − 1)

2
+ 36× 1±

(
24

(n− 1)

2
+ 12× 1

)
,
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where n − 1 and n2 − 1 are even numbers. This is similar to the above
expression with the addition of 36 ± 12, which again is divisible by 24 to
give further x-values as integers.

The difference between pairs of x-values associated with each n-value is

x =
(36n2 ± 12n)

24
,

which can be rewritten as

x =
3n2 ± n

2
,

where the difference between the two values of x is n.

But when z takes a value of 6n + 3, then x does not have an integer
solution. i.e.

x =
(36n2 + 36n) + 8

24
,

which is not an integer for odd or even values of n.

This problem has shown that a solution is obtained by considering the
inverse of the function, but the values of x could be found by finite differ-
encing. However it is likely that anyone trying this technique is more likely
to spot the easier method of finding z (my designation).

Another feature of the solution is obtained when n takes a value of 0.
x now becomes 0 in both cases—which is two values of 0 separated by 0 or
n in this case.

If negative values of n are considered, x takes positive values again, since
in the inverse function, z is squared. In which my statement ‘two values
separated by n’ must be considered in the reverse direction: e.g. if n = −2
then the two x-values become 7 and 5 rather than 5 and 7.

I wonder if anyone would like to consider looking for a solution in com-
plex numbers?

Problem 316.1 – Irrational series

Let k be a positive integer. Suppose a1, a2, . . . are non-negative integers
of which an infinite number are positive and only a finite number satisfy
an > nk. Show that

a1
1!

+
a2
2!

+ . . .

is irrational, or find a counter-example.
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Problem 316.2 – Integer tetrahedron

Tony Forbes

A tetrahedron has edge lengths which are 6 consecutive integers. If its
volume is an integer, show that it must be 48. Or find another value.

Writing the edges in the order (AB,AC,AD,BC,BD,CD) for a tetra-
hedron with vertices A, B, C, D, we have these two useful formulæ for the
volume:

1

6

∣∣∣∣∣∣∣∣ det


Ax Bx Cx Dx

Ay By Cy Dy

Az Bz Cz Dz

1 1 1 1


∣∣∣∣∣∣∣∣

in terms of the coordinates of the vertices, and 1

288
det


0 1 1 1 1
1 0 |AB|2 |AC|2 |AD|2
1 |AB|2 0 |BC|2 |BD|2
1 |AC|2 |BC|2 0 |CD|2
1 |AD|2 |BD|2 |CD|2 0




1/2

. (1)

Using them (or otherwise) one can confirm that volume 48 is obtained for
some orderings of {6, 7, . . . , 11}. In particular we have this example:

(|AB|, |AC|, |AD|, |BC|, |BD|, |CD|) = (6, 7, 8, 11, 10, 9) → volume 48.

The volume of a tetrahedron must be real. The alternative ordering of
edge lengths (6, 7, 10, 11, 8, 9) when substituted into (1) gives 12i, and one
can confirm by trying to build it out of cardboard that the corresponding
tetrahedron does not exist.

Problem 316.3 – Two integrals
Tony Forbes
Show that∫ 1

0

arctan t√
t

dt =
√

2 arccoth
√

2− π

2

(√
2− 1

)
= 0.595805

and ∫ 1

0

arctan t

t1/3
dt =

3

8

(
2
√

3 log
(

2 +
√

3
)
− π

)
= 0.532681.
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Evaluation of series via the Laplace transform
Henry Ricardo
The Laplace transform is the first integral transform an undergraduate
STEM student encounters, usually in a differential equations course. This
transformation is defined by

L[f(t)] =

∫ ∞
0

e−stf(t) dt = F (s)

for a function f whose rate of growth yields a convergent improper integral.
An important property of this transform is its linearity: L[αf(t) + βg(t)] =
αL[f(t)] + βL[g(t)] for constants α and β. This characteristic allows one to
convert a linear differential equation to an algebraic equation and a system
of linear differential equations to a system of algebraic equations. Lists of
Laplace transforms can be found in many textbooks and books of maths
tables, and the function is embedded in many computer algebra systems.

What students usually don’t see is that this transformation can be used
to evaluate certain infinite series. The method is effective when you have an
infinite series

∑∞
n=1 an whose summand an can be represented by a Laplace

transform integral: an =
∫∞
0
e−ntf(t) dt for an appropriate function f . Let’s

look at some examples to see how this technique works.

Example 1. Evaluate

∞∑
n=1

(−1)n+1

2n+ 1
.

We have

1

2n+ 1
=

1

2(n+ 1/2)
and

(−1)n+1

2n+ 1
=

(−1)n+1

2(n+ 1
2 )

=
(−1)n+1

2
L[e−t/2].

Therefore, recognizing a geometric series in the calculation,

∞∑
n=1

(−1)n+1

2n+ 1
=

∞∑
n=1

(−1)n+1

2
· L[e−t/2]

=

∞∑
n=1

(−1)n+1

2
·
∫ ∞
0

e−nte−t/2 dt

=
1

2

∫ ∞
0

e−t/2

( ∞∑
n=1

(−1)n+1e−nt

)
dt

=
1

2

∫ ∞
0

e−t/2
(

e−t

1 + e−t

)
dt
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=
1

2

∫ ∞
0

e−t/2

et + 1
dt

u=et/2
=

∫ ∞
1

1

u(u2 + 1)
du = 1 − π

4
.

A crucial observation is that in the third line of this derivation, we have
interchanged integration and summation. Generally, if we have a conver-
gent infinite series,

∑∫
6=
∫ ∑

, so that we must be able to justify this
swap by one of the standard criteria found in most analysis texts: uniform
convergence, monotone convergence, dominated convergence, or bounded
convergence of the series in the integrand. In this example, the swap can

be justified by dominated convergence:
∣∣∣ N∑
n=1

(−1)n+1e−nt
∣∣∣ ≤ 2

1 + et
= g(t)

and
∫∞
0
g(t) dt converges.

If the interchange of summation and integration can be justified, then
we have
∞∑
n=1

an =

∞∑
n=1

∫ ∞
0

e−ntf(t) dt =

∫ ∞
0

f(t)

∞∑
n=1

e−nt dt =

∫ ∞
0

f(t)

(
e−t

1− e−t

)
dt.

Then we must evaluate this integral to get the sum of the original series.
However, the availability of such resources as Tables of Integrals, Series,
and Products by I. S. Gradshteyn and I. M. Ryzhik makes this part of the
process relatively easy.

Our next example is a problem (310.8) whose solution appeared in issue
313 of this journal.

Example 2. Show that

∞∑
n=1

1

n2 + 2n3 + n4
=

π2

3
− 3.

As in the original solution, the first step is a partial fraction decomposition:

1

n2 + 2n3 + n4
= − 2

n
+

1

n2
+

1

(n+ 1)2
+

2

n+ 1
.

Then we find that

− 2

n
= − 2L[1],

1

n2
= L[t],

1

(n+ 1)2
= L[te−t],

2

n+ 1
= 2L[e−t].

Therefore,

1

n2 + 2n3 + n4
= −−2L[1] + L[t] + L[te−t] + 2L[e−t]
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and

∞∑
n=1

1

n2 + 2n3 + n4
=

∞∑
n=1

L[−2 + t+ te−t + 2e−t]

=

∞∑
n=1

∫ ∞
0

e−nt(−2 + t+ te−t + 2e−t) dt

=

∫ ∞
0

(−2 + t+ te−t + 2e−t) ·
(

e−t

1− e−t

)
dt

= − 2

∫ ∞
0

e−t

1− e−t
dt+

∫ ∞
0

te−t

1− e−t
dt

+

∫ ∞
0

te−2t

1− e−t
dt+ 2

∫ ∞
0

e−2t

1− e−t
dt.

= − 2

∫ ∞
0

e−t dt+

∫ ∞
0

te−t · e
t + 1

et − 1
dt

= − 2 +

(
−1 +

π2

3

)
=

π2

3
− 3.

The last integral involves polylogarithms and can be found in a good table
of integrals.

Two solutions of the next problem (310.3) appear in M500 313, and we
provide a third possibility.

Example 3. Evaluate

∞∑
n=1

3 + 10n+ 10n2 − 6n4

(n2 + n)4
.

We have

3 + 10n+ 10n2 − 6n4

(n2 + n)4
=

2

(n+ 1)3
− 2

n3
− 3

(n+ 1)4
+

3

n4

= L[t2e−t]− L[t2]− 1

2
L[t3e−t] +

1

2
L[t3]

= L[t2e−t − t2 − 1

2
t3e−t +

1

2
t3].

It follows that

∞∑
n=1

3 + 10n+ 10n2 − 6n4

(n2 + n)4
=

∞∑
n=1

∫ ∞
0

e−nt(t2e−t − t2 − 1

2
t3e−t +

1

2
t3) dt
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=

∫ ∞
0

(t2e−t − t2 − 1

2
t3e−t +

1

2
t3)

(
e−t

1− e−t

)
dt

=

∫ ∞
0

t2e−2t

1− e−t
dt−

∫ ∞
0

t2e−t

1− e−t
dt− 1

2

∫ ∞
0

t3e−2t

1− e−t
dt

+
1

2

∫ ∞
0

t3e−t

1− e−t
dt.

Now the first two integrals can be combined and the third and fourth inte-
grals can be combined. Then simple factorizations leave us with

−
∫ ∞
0

t2e−t dt +
1

2

∫ ∞
0

t3e−t dt,

which, after an appropriate number of integrations by parts, yields 1.

Problem 310.1 in this Journal, with two solutions appearing in M500

312, asks the reader to show that

∞∑
n=1

sinn

n
=

∞∑
n=1

sin2 n

n2
=

π − 1

2
. This

can be done using the Laplace transform (cf. [3]), but with some complex-

ification (pun intended). The general term
sinn

n
should be written as a

product sinn · 1

n
, and only the second factor regarded as a Laplace trans-

form:
1

n
= L[1]. See [3] for further information.

Not every infinite series has terms that correspond to Laplace trans-
forms, but when you can make this connection, the evaluation of such a
series reduces to the evaluation of integrals in a straightforward way. Orig-
inally the values of the series in Examples 2-4 were attained in a fairly
elementary manner (partial fractions and telescoping series), but these so-
lution strategies involved a certain amount of intuition and luck and would
not have been applicable, say, to Example 1.
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Solution 313.3 – Tetrahedron
A tetrahedron has vertices A, B, C, D, and

∠BAD = ∠BAC = ∠CAD = 90◦.

Show that the face areas 4BCD, 4BAC, 4CAD and 4DAB
satisfy

(4BCD)2 = (4BAD)2 + (4BAC)2 + (4CAD)2.

Tommy Moorhouse
Let the vertices of the tetrahedron be at A = (0, 0, 0), B = (b, 0, 0), C =
(0, c, 0) and D = (0, 0, d). This arrangement clearly satisfies the conditions
set out in the problem. Each of the angles of 4BCD is acute and so we
can use the following lemma to develop the solution.

Figure 1: Triangle construction

Lemma The area of a plane triangle with sides l1, l2 and l3 is

AT =
1

4

√
2l21l

2
2 + 2l21l

2
3 + 2l22l

2
3 − l41 − l42 − l43.
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Proof From Figure 1 we see that

m2 + h2 = l22,

(l3 −m)2 + h2 = l21.

Solving for m and h we find

m =
l23 + l22 − l21

2l3
,

h2 =
2l21l

2
3 + 2l22l

2
3 + 2l11l

2
2 − l41 − l42 − l43

4l23
.

The area of the triangle is hl3/2, which is AT as required. �

Now the triangle areas are

4ABC =
bc

2
, 4ADC =

dc

2
and 4ABD =

bd

2
.

We use Pythagoras’ Theorem to set

l21 = b2 + c2, l22 = d2 + c2 and l23 = b2 + d2,

where l1, l2 and l3 have been chosen in no particular order. With this choice
AT = 4BCD. Expanding the terms of (4BCD)2 in terms of b, c and d we
find

2l21l
2
2 = 2(b4 + b2d2 + c2b2 + c2d2),

2l21l
2
3 = 2(b2c2 + b2d2 + c4 + c2d2),

2l22l
2
3 = 2(b2c2 + b2d2 + c2d2 + d4),

l41 = b4 + 2b2c2 + c2,

l42 = b4 + 2b2d2 + d4,

l43 = c4 + 2c2d2 + d4.

This gives

(4BCD)2 =
1

16
(2l21l

2
2 + 2l21l

2
3 + 2l22l

2
3 − l41 − l42 − l43)

=
1

4
(b2d2 + b2c2 + c2d2)

= (4ABC)2 + (4ABD)2 + (4ADC)2,

proving the result.
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Problem 316.4 – Goat
Tony Forbes
The recreational mathematical literature (M500 included) is sprinkled with
problems that involve a goat, a field and the grazing of the one by the other.
Sometimes the goat is a horse but always the problem is to determine the
area that the goat can access when it is tethered to a fixed point in the field
by a rope of constant length. To make things less trivial, there has to be
some obstruction within range of the tether, possibly a boundary fence, or
a barn of some simple shape, elliptical, rectangular, whatever.

In this problem there is a boundary in the shape of the function coshx.
The goat is tethered to (0, 1) by a rope of length sinh 1 and the said animal
is free to graze south of the curve. What area can he access?

A diagram will make this clearer. Assume the goat is north of the line
y = 1. With the rope taut we see that it hugs the curve from (0, 1) to
U = (u, coshu) for a length of sinhu and then leaves U and heads straight
for

G = (a(u) + u, b(u) + coshu),

where a(u), b(u) and sinh 1−sinhu are the sides of the right-angled triangle
shown. Observe that b(u)/a(u) = cosh′(u) = sinhu. As u goes from 0 to 1,
G traces the thick blue curve from P to Q.

1
0 u 1 sinh 1

aHuL
bHuLsinh 1 - sinh u

U

Q

P

G

y = cosh x
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I offer this problem to M500 readers because it is doable for an exact
answer involving only elementary functions. The cosh function has the
interesting property that lengths are readily computable. Indeed, the length
along the curve from (0, 1) to (u, coshu) is∫ u

0

√
1 +

(
d cosh(x)

dx

)2

dx =

∫ u

0

√
1 + sinh2(x) dx

=

∫ u

0

cosh(x) dx = sinhu.

As a check, you can verify that the area of the part in the region x ≥ 0,
y ≥ 1 is slightly greater than the area enclosed by the circle passing through
P and Q that meets the line y = 1 at 90 degrees. This is the feint magenta
curve in the picture. The radius of the circle is

r =
2− 2e+ cosh 2

2 (sinh 1− 1)
= 0.929309,

its centre is at (sinh(1)− r, 0), and the area bounded by the circle, the line
y = 1 and the curve y = coshx, 0 ≤ x ≤ 1 is∫ 1

0

(coshu− 1)du+ arcsin

(
cosh 1− 1

r

)
r2

2
− (cosh 1− 1)(r − sinh 1 + 1)

2

= 0.239935.

r

0 1
sinh 1

y = cosh x
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Problem 316.5 – Prism
Tony Forbes
This is like Problem 315.6 – Prism in that you are to determine from limited
observations the n for a regular n-sided prism. Suppose you are standing on
the ground at point V outside the prism such that four consecutive corners
P1, P2, P3 and P4 are visible. Let

α = ∠P1V P2, β = ∠P2V P3, γ = ∠P3V P4.

Compute n as a function of α, β and γ.

P1
P2 P3

P4

V

Α Β Γ

For instance, if α = 18.29◦, β = 28.84◦ and γ = 24.11◦, then n must be 42.

Ideally we want an exact expression for n. However, in the example the
angles are given to only two decimal places and yet the precision is sufficient
to determine n exactly, as you can see if you set up the relevant equations
and solve them numerically.

The problem as stated looks fiendish. Perhaps one can begin by working
a special case—where the viewpoint V is on the perpendicular bisector of
P2P3. Then γ = α and, assuming the prism side length |P1P2| is equal to
2, we have

|P2V | = cosec
β

2
and ∠V P2P1 =

2π

n
+
π

2
+
β

2
.



M500 316 Page 19

Hence, by the sine rule,

sinα

2
=

sin(∠V P1P2)

|P2V |
=

sin

(
π

2
− α− β

2
− 2π

n

)
cosec

β

2

,

which can be solved to obtain

n =
2π

π

2
− α− β

2
− arcsin

(
sinα

2 sin(β/2)

) .
This might not work when V is at infinity.

Problem 316.6 – 6-Regular graph construction
Tony Forbes
Given a 5-regular graph on 12 vertices {1, 2, . . . , 12}, one can construct a
6-regular graph on 13 vertices as follows. Take the 5-regular graph and find
three pairs of non-adjacent vertices, {v1, v2}, {v3, v4}, {v5, v6}, such that
v1, v2, . . . , v6 are distinct. Add them as edges. Then add edges {w, 13} for
the remaining vertices w ∈ {1, 2, . . . , 12} \ {v1, v2, . . . , v6}.

Can all 13-vertex, 6-regular graphs be obtained in this way? Alterna-
tively, given a 13-vertex, 6-regular graph, is it always possible to remove a
vertex v as well as three edges that span six vertices other than v?

A general construction suggests itself. Take a d-regular graph with
2m + d + 1 vertices. Add m edges that span distinct vertices, v1, v2, . . . ,
v2m. Add a new vertex w and a further d+1 edges {w, v2m+1}, {w, v2m+2},
. . . , {w, v2m+d+1}. The result is a (d + 1)-regular graph with 2m + d + 2
vertices.

It would be interesting to see what is created when you start the con-
struction process with an empty graph. For example, here are the first six
stages of a sequence with m = 1. An available edge chosen at random is
coloured blue. The edges incident with the new vertex are shown in red.
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Solution 312.3 – Area and perimeter
What’s the area of the shape? What about the perimeter?

1

a

b

Ted Gore
The following sketch is a reasonably accurate copy of that in the question
and is marked up to make clear the steps presented below.

a

b

D
C

B

A
E

r

q

p

w

To determine the area of the figure we need to find p, q, r, w, a and b. This
can be done using a compass and straight edge. The following steps are
only meaningful when used on an accurate scale copy of the figure.

Step 1. We know that AD = 1. With the compass needle on B draw
a circle through A. This also passes through D so that p = AB = 1/2 and
q + r = BD = 1/2.

Step 2. Draw a horizontal straight line and mark a point X roughly in
the middle of the line. With the compass width set to r mark a point Y
a distance of 3r to the left of X. With the compass width set to q mark
a point Z at a distance 2q to the right of X. With the compass needle on
X draw a circle that passes through Y . It also passes through Z so that
3r = 2q. Since we know that q + r = 1/2 we calculate that 3r/2 + r = 1/2
so that r = 1/5 and q = 3/10.
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Step 3. Set the compass width to AD and with the needle on C mark
the point E. Then AE = r. Move the needle to B and set the compass
width to w. A circle drawn with this radius passes through E so that
w = p+ r = 7/10.

Step 4. We have that AD = 1 and we can bisect p to give a length of
1/4. With these and the other lengths that we have found we can measure
a = 2.25 and b = 3.4.

Result. The area of the figure is

ap+ wq + (b+ w)r =
a

2
+

21

100
+
b

5
+

7

50
=

a

2
+
b

5
+

35

100
= 2.155.

The perimeter is 1 + (p+ q + r) for the vertical lines and a+ (a−w) +
b+ (b+ w) for the horizontal giving 2 + 2a+ 2b = 13.3.

Note that the figure can be generated from r alone using valid straight
edge and compass operations and that the actual size of the figure depends
only on the initial choice of r.

Tony Forbes
I spent several days on and off thinking about this problem until it occurred
to me (or somebody told me—I can’t remember) that the area of the shape
does not have a value that depends only on a and b. All I can say is that

area = ap+ br + w (1− p),

where the parameters w, p and r can take any sensible values.

After I had succeeded in ‘solving’ the area problem I was only a little
bit astonished to discover that the shape’s perimeter does have a calculable
value. We make the assumption that for some ε > 0, a disc of radius ε can
move freely around inside the entire shape as depicted. Using the notation
established on page 20 we have w > 0 and

perimeter = 1 + a+ p+ (a− w) + (1− p− r) + b+ r + (b+ w).

Then all those extra parameters vanish to give

perimeter = 2(1 + a+ b).

The degenerate case (w = 0) is left to the reader.
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Problem 316.7 – Cubes
A 5× 5× 5 cube is partitioned into 125 1× 1× 1 subcubes of which five are
coloured red. The other 120 are coloured something other than red. Each
1× 5× 5 slice of the cube contains exactly one red subcube. In how many
ways can this be done?

Front cover A tetrahedron with transparent faces, the example on page 9.


