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Who Invented the Shoelace Formula?

Robin Whitty

The Shoelace Formula allows you to calculate the area of a simple polygon
from the coordinates of its vertices, listed anticlockwise.

Area =
1

2
(x0y1 − x1y0 + x1y2 − x2y1 + . . .+ xn−1y0 − x0yn−1) (1)

or, more concisely,

area =
1

2
(v0v1 + v1v2 + . . .+ vn−1v0) , (2)

where vivj is a ‘shorthand’ for xiyj − xjyi.
It is surprisingly concise, given that it works for non-convex polygons.

It takes its name from the ‘interlacing’ of x and y ordinates. But whom
might it be named after?

The formula is often referred to as ‘Gauss’s’ but “the formula was
certainly not invented by him” according to the German mathematician
Burkard Polster in his excellent Mathologer Youtube video “Gauss’s magic
shoelace area formula and its calculus companion”. A rather cursory trawl
through those parts of Gauss’s collected works that pertain to plane ge-
ometry showed me nothing resembling the above formula. But it is also
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sometimes called ‘the surveyor’s area formula’ and Gauss, as a loyal subject
of the Duke of Hanover, undertook the challenge of surveying the duke’s
territory. Whatever records of that enterprise might exist they have not
been examined, even cursorily, by me. In any case Gauss was famously ret-
icent about publishing his discoveries, I suppose to the frustration of even
accomplished historians of science.

Wikipedia accounts of Shoelace (as I will call it for short) vary greatly
from language to language. The English language page is more assertive
than most on history: “The formula was described by Albrecht Ludwig
Friedrich Meister (1724–1788) in 1769 and is based on the trapezoid formula
which was described by Carl Friedrich Gauss and C. G. J. Jacobi.” Since
Gauss was born in 1777 and Jacobi in 1804, the phrase ‘based on’ is not
to be taken literally. Nor, in any case, can I find that Gauss wrote down a
‘trapezoid formula’ in relation to polygon area. But the work of Meister is
definitely relevant.

Albrecht Meister wrote a treatise called Generalia de genesi figurarum
planarum et inde pendentibus earum affectionibus (dated 1770, in fact, not
1769). This may be regarded as the first systematic account of polygons. It
addresses how polygons may be specified, classified and manipulated, and
has many pages of diagrams. It talks about area in detail. And Gauss’s
collected correspondence contains a letter of 1825 to his friend and colleague
Wilhelm Olbers in which he says (my cursory translation from German):

I could also have mentioned the theory of the area of figures,
which I have been looking at for thirty or more years from a
point of view that I have hitherto considered to be new. This,
however, is partly a mistake: in fact, only recently did I learn
of a treatise by Meister (in my opinion a very brilliant mind)
in the first volume of the Novi Commentarii Gotting, in which
the matter is viewed in almost exactly the same way and is
developed very nicely.

Nevertheless Generalia de genesi figurarum planarum definitely does not
describe Shoelace, nor indeed any formulae. What was it that so impressed
Gauss? I think it was Meister’s invention of ‘signed area’, meaning that
area created by a closed curve turning anticlockwise should be taken to be
positive while oppositely oriented areas should be negative. He has several
diagrams relating to signed area, one of which is reproduced in figure (a)
on the next page.
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(a) (b)

One supposes that, for a mathematician of Gauss’s stature, this ‘rule of
signs’ was the single, essential insight needed for polygon area; everything
else was just bookkeeping. He would hardly have thought it worthwhile
recording the fact that the area of a triangle, specified by the direction
vectors of its three sides, is half the cross product of any two of these
vectors, taken anticlockwise. (The terminology is anachronistic but vector
algebra was, in some form, already present in eighteenth century two and
three dimensional geometry.) In figure (b), above, v0, v1 and v2 are position
vectors (coordinate pairs). The direction vectors of the sides joining v0 to
v1 and v1 to v2 are, respectively, v1 − v0 and v2 − v1. So the bookkeeping
goes as follows:

Area =
1

2
(v1 − v0)× (v2 − v1) (half cross product of edges)

=
1

2
(v1 × v2 + v1 ×−v1 − v0 × v2 − v0 ×−v1)

=
1

2
(v1 × v2 + 0− v0 × v2 + v0 × v1) (since vi × vi = 0)

=
1

2
(v1 × v2 + v2 × v0 + v0 × v1) (since vi × vj = −vj × vi)

=
1

2
(v0v1 + v1v2 + v2v0) . (in the notation of equation (2).)

And Shoelace has emerged directly from the cross product rule; and indeed
equation (2) is simply Shoelace in cross product notation.

It is still something of a leap of imagination to see that clockwise and
anticlockwise triangles will combine, in tracing a complicated non-convex
polygon, to produce its total area. And although I can believe that this was
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implicit in what Meister wrote, and explicit in what Gauss thought, still we
have yet to see it announced as a formula. This announcement happened,
we have it on good authority, in 1810. Lezioni di statica grafica, an 1877
textbook by the Italian mathematician and historian of science Antonio
Favaro (1847–1922), was translated, as Leçons de statique graphique, in two
parts by a Monsieur Paul Terrier. I can discover nothing about Monsieur
Terrier, except that he studied at the elite École centrale Paris, but he was
very thorough in his translation of Lezioni, adding copious appendices and
footnotes. Chapter 4 of Part 2 opens with a section on “Principe des signes
appliqué aux aires”. And immediately there is a long footnote in which
Terrier traces “Les premières notions sur les signes des aires, spécialement
dans les figures aux périmètres croisés” to Meister’s 1770 treatise. And
he continues “C’est ici le cas de rappeler la célèbre formule de Gauss ...”;
and recall the celebrated formula he accordingly does. And he goes on to
state (my translation) “This formula was published for the first time in the
German translation of Géométrie de position de Carnot”.

Lazare Carnot’s Géométrie de position was published in 1803 and was
published in German as Geometrie der Stellung in 1810. As with Favaro’s
Lezioni the translation provides additional material and this is why Paul
Terrier cites it as the Shoelace’s place of origin. And on page 362 we find a
footnote marked “Anmerkung des Herausgebers”, meaning “editor’s note”,
or in this case, I think, “translator’s note”, which reads

According to a famous theorem of Gauss, the area of a polygon
with n sides, if the coordinates of the vertices are numbered in
one direction:

x, y
x′, y′

· · ·
xn−1, yn−1

is

1

2

{
x
(
y′ − yn−1

)
+ x′

(
y2 − y

)
+ x′′

(
y3 − y′

)
+ . . .

+ xn−1
(
y − yn−2

)}
.

on which he himself, perhaps, on another occasion, will give us
a more complete treatise.

There is no mention of the formula in Carnot’s 1803 text. The translator
for the German edition was Heinrich Christian Schumacher (1780–1850), a
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mathematician and astronomer from the German–Norwegian borders. He
studied law at Göttingen and Kiel, graduating in 1806 from the former,
where he then took up scientific studies under Gauss. In Monthly Notices
of the Royal Astronomical Society, Vol. 11, February 1851, pp.73–81 we read

In 1805 he began his translation of Carnot’s Géometri de posi-
tion into German, ad recreationem animi, as he says himself in
the introduction to the work. This translation, with notes by
Gauss, was published at Hamburg in two volumes.

There is no doubt that Gauss and Schumacher were, and remained,
close colleagues. In the complete correspondence of Gauss, which may be
read at the website gauss.adw-goe.de, a sixth of the over eight thousand
entries are letters to or from Schumacher. Of those predating the publication
of Geometrie der Stellung none appear to relate to polygon area. In any
case, Schumacher remained at Göttingen until 1810, when he was appointed
extraordinary professor of astronomy at Copenhagen. We have to assume
that Schumacher’s footnote on page 362 of Geometrie der Stellung had at
least Gauss’s blessing, if it was not actually dictated by Gauss. We can
imagine Schumacher adding the “on which he himself, perhaps, on another
occasion, will give us a more complete treatise” to tease Gauss, the reluctant
scribe.

Problem 321.1 – Sums of squares
Tony Forbes
Find all solutions in integers a > 7 and b > 0 of

a∑
k=7

k2 = b2.

The first few are

(a, b) = (29, 92), (39, 143), (56, 245), (190, 1518), (2215, 60207).

Are there any more? More generally, one can replace 7 by k0. When
k0 = 1 it is of course the classic cannon-balls-stacked-in-a-square-pyramid-
formation problem, with unique solution (a, b) = (24, 70). Small solutions
happen to be unusually common when k0 = 7.
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Solution 319.5 – Factorial factorial
How many zeros are at the end of (n!)!?
If that’s difficult, do n! first.
If that’s difficult, try a special case, say 100!.

Jodie Forbes
Clearly brute force calculation doesn’t get us very far. The calculator on
my PC says:

(2!)! = 2! = 2 (0 terminal zeros),
(3!)! = 6! = 720 (1 terminal zero),
(4!)! = 24! = 620448401733239439360000 (4 terminal zeros),
(5!)! = 120! ≈ 6.6895× 10198 (unknown number of terminal zeros).

What we are looking for is the number of multiples of 10 in the factorial,
which is equivalent to looking for the number of times 5 appears in the
factorisation (because 10 = 2×5 and there are many more factors of 2 than
5). If we look first at the simpler case of n!, we see the following, noting
that we have to be careful to count the additional factors when we reach
powers of 5 such as 52.

n n!
Number of factors of 5
= number of terminal

zeros

5 120 1
10 3628800 2
15 1307674368000 3
20 2432902008176640000 4
25 15511210043330985984000000 6

Using these insights we can give a formula for the number of zeros at
the end of n!:

blog5 nc∑
k=1

⌊ n
5k

⌋
. (1)

To extend this to the case of (n!)! we substitute n! in (1), giving the following
formula:

blog5 n!c∑
k=1

⌊
n!

5k

⌋
. (2)
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We can further attempt to substitute Stirling’s approximation for n! in
(2), giving ⌊

log5

√
2πn

(n
e

)n⌋∑
k=1


√

2πn
(n
e

)n
5k

 . (3)

Because Stirling’s approximation sometimes underestimates n!, some fac-
tors of 5 can be missed and formula (3) will give us an underestimate of
the number of terminal zeros. Similarly, in cases where Stirling’s approxi-
mation is too high, formula (3) may give an overestimate of the number of
terminal zeros. Nevertheless, for large n, the use of Stirling’s approximation
gives a reasonable value. Some examples are shown in the following table,
calculated using Mathematica on my PC.

n n!
Stirling ap-
proximation

for n!

Number of
terminal

zeros in (n!)!
according to

(2)

Number of
terminal

zeros in (n!)!
according to

(3)

2 2 1.919 0 0

3 6 5.836 1 1

4 24 23.502 4 4

5 120 118.02 28 27

6 720 710.08 178 176

7 5040 4980.4 1258 1242

8 40320 39902 10076 9972

9 362880 359536 90717 89881

10 3628800 3598696 907197 899669

12 479001600 475687486 119750395 118921862

100 9.3326×10157 9.3248×10157 2.3332×10157 2.3312×10157

1000 4.0239×102567 4.0235×102567 1.0060×102567 1.0059×102567

10000 2.8463×1035659 2.8462×1035659 7.1156×1035658 7.1156×1035658

Thanks to Dave Wild for computing the entry in column 4 for 10000.
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Solution 319.3 – Sum
Show that

1

1 · 3 · 5
+

1

7 · 9 · 11
+

1

13 · 15 · 17
+ . . . =

log 3

16
.

The factors in the denominators run through the odd positive
integers.

J. M. Selig
I thought I had a good idea how to solve this but when I looked into it I
was completely wrong. After a little searching using Mathematica and
Wikipedia I figured out how to approach it. The solution uses the digamma
function, which I was only vaguely aware of.

Let’s name the sum and observe that it can be written as

S =
1

1 · 3 · 5
+

1

7 · 9 · 11
+

1

13 · 15 · 17
+ · · ·

=

∞∑
n=0

1

(6n+ 1)(6n+ 3)(6n+ 5)
.

Using partial fractions we can rewrite the sum as

S =
1

48

∞∑
n=0

(
1

n+ 1/6
− 2

n+ 3/6
+

1

n+ 5/6

)
.

Now, we cannot split up this sum because the individual terms behave like
1/n and summing such terms will not converge.

This is where we introduce the digamma function ψ(x). This is the
derivative of the log of the gamma function:

ψ(x) =
d

dx
log
(
Γ(x)

)
.

The gamma function satisfies the relation

Γ(x+ 1) = xΓ(x);

taking the logarithm and differentiating then gives

ψ(x+ 1) =
1

x
+ ψ(x).
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This means we can write the reciprocal as a forward difference,

1

x
= ψ(x+ 1)− ψ(x).

The partial sum of the first N terms SN , can then be evaluated by ‘tele-
scoping’,

SN =
1

48

N−1∑
n=0

(
1

n+ 1/6
− 2

n+ 3/6
+

1

n+ 5/6

)
=

1

48

(
ψ(N + 1/6)− 2ψ(N + 3/6) + ψ(N + 5/6)

)
− 1

48

(
ψ(1/6)− 2ψ(3/6) + ψ(5/6)

)
.

From Wikipedia [1], we have the asymptotic relation,

log(x− 1/2) 6 ψ(x) 6 log(x)

for large x. So, combining

log(N + 1/6− 1/2) 6 ψ(N + 1/6) 6 log(N + 1/6),

−2 log(N + 3/6) 6 − 2ψ(N + 3/6) 6 −2 log(N),

log(N + 5/6− 1/2) 6 ψ(N + 5/6) 6 log(N + 5/6)

gives

log

(
(N2 − 1/9)

(N + 1/2)2

)
6 X 6 log

(
(N + 1/6)(N + 5/6)

N2

)
,

where
X =

(
ψ(N + 1/6)− 2ψ(N + 3/6) + ψ(N + 5/6)

)
.

In the limit N → ∞, the arguments of the logarithmic functions tend
to 1. Hence, the expression X is squeezed between functions that tend to
zero. Thus we conclude that

lim
N→∞

(
ψ(N + 1/6)− 2ψ(N + 3/6) + ψ(N + 5/6)

)
= 0,

and so

S = − 1

48

(
ψ(1/6)− 2ψ(3/6) + ψ(5/6)

)
.
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The problem has been reduced to the evaluation of the digamma func-
tion at three points. Fortunately, there are exact values for the digamma
function at these points. Again from the Wikipedia page [1], we have that

ψ(3/6) = ψ(1/2) = − 2 log(2)− γ

and

ψ(1/6) = − π
√

3

2
− 2 log(2)− 3 log(3)

2
− γ,

where γ is the Euler–Mascheroni constant. To find the value of the digamma
function at 5/6 we use the reflection formula,

ψ(1− x)− ψ(x) = π cot(πx)

with x = 1/6. The gives

ψ(5/6) =
π
√

3

2
− 2 log(2)− 3 log(3)

2
− γ.

Combining these values we get(
ψ(1/6)− 2ψ(3/6) + ψ(5/6)

)
= − 3 log(3)

and hence

S = − 1

48

(
ψ(1/6)− 2ψ(3/6) + ψ(5/6)

)
=

3 log(3)

48
=

log(3)

16
.

I am not entirely happy with this solution. Using Mathematica to
evaluate the original series simply produces the result stated, but I’m con-
fident that it doesn’t find it the way I have. There is probably a lot more
about the digamma function that I am not aware of and also probably clever
tricks that allow one to sum the series without having to use the limiting ar-
gument used above. But I am very happy to have learned at least something
about the digamma function.

References

[1] Wikipedia contributors, ‘Digamma function’, Wikipedia, The Free
Encyclopedia, https://en.wikipedia.org/wiki/Digamma_function
(accessed June 17, 2024).

https://en.wikipedia.org/wiki/Digamma_function
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A dog ate my M500 magazine

Dave Wild

When I looked at the few remaining scraps of the magazine I found the
following part of a problem

Show that H1 +H2 + . . .+Hn = n3.

What are the values of the Hi? Putting n = 1 we can deduce that
H1 = 1. Adding Hn+1 to both sides of the equation we should expect that

n3 +Hn+1 = (n+ 1)
3
.

As
Hn+1 = 3n2 + 3n+ 1 = 3 (n+ 1)

2 − 3 (n+ 1) + 1

then, for n > 1,
Hn = 3n (n− 1) + 1.

As the value of H1 is 1, the formula for Hn is valid for all n.

If the sequence was defined by a recurrence relation, then H1 = 1, and
subtracting Hn−1 from Hn gives

Hn = Hn−1 + 6 (n− 1) .

The resulting sequence starts

1, 7, 19, 37, 61, 91, 127, 169, . . . .

When I put this into the On-Line Encyclopedia of Integer Sequences I found
it is sequence A003215 of Hex(agonal) numbers. So in this case from the
formula for the sum of a number of terms of a sequence we have been able
to identify the unknown values Hi.

We can replace n3 in the original problem by another function of n.
Using (n+ 1)!− 1, we obtain the formula

1 · 1! + 2 · 2! + . . .+ n · n! = (n+ 1)!− 1.

Why not choose your own function for the sum and see what sequence
appears.
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Solution 300.1 – Friends
There are a finite number of people. For any two distinct per-
sons, a and b, there is a unique person c who is friends with both
a and b. Show that there exists one person who is friends with
every other person.

This is known in the literature on finite projective planes as the
Friendship Theorem. What is wanted ideally is a proof that
readers of this magazine can readily understand.

Tony Forbes

A strongly regular graph srg(n, d, λ, µ) is a graph with these properties.

(i) The graph is simple (undirected, no loops, no multiple edges) and has
n vertices.

(ii) The graph is d-regular (each vertex has d neighbours).
(iii) Each pair of adjacent vertices has λ common neighbours.
(iv) Each pair of non-adjacent vertices has µ common neighbours.

If the graph is complete, we are flexible concerning the parameter µ; you
can put anything you like there. Similarly for λ when the graph has no
edges.

I am not going to prove the Friendship Theorem. That has been done in
[Judith Q. Longyear and T. D. Parsons, The Friendship Theorem, Indaga-
tiones Mathematicae (Proceedings) 75 (1972), 257–262] by elementary graph
theory. In particular, they avoid any mention of finite planes, projective or
otherwise. More recently, in the 21st century at the LSBU Maths Study
Group, Carrie Rutherford delivered a series of talks based on the Longyear
& Parsons paper. After some elementary analysis it becomes clear that
when more than three people are involved the Friendship Theorem is equiv-
alent to the non-existence of an srg(d2 − d+ 1, d, 1, 1) for d > 2.

If the number of persons is 3, the Friendship Theorem is either true
or false. It depends on whether you are reading the Longyear & Parsons
paper or how you interpret ‘one’ in the statement of Problem 300.1. The
corresponding graph is an srg(3, 2, 1, 42), i.e. a triangle. The theorem is
vacuously true when there are fewer than three people.

We aim to show that there is no srg(d2 − d+ 1, d, 1, 1) for d > 2.

Denote the all-1s vector by j, the identity matrix by I and the all-1s
square matrix by J , all of whatever dimension is relevant.
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Theorem 1 There is no srg(d2 − d+ 1, d, 1, 1) for d > 2.

Proof Let n = d2 − d + 1, d ≥ 2. Let A be an adjacency matrix of an
srg(n, d, 1, 1). Then d is even and A2 is determined since

[A2]i,i = number of 2-step walks from i to i = d,

[A2]i,j, j 6=i = number of 2-step walks from i to j = 1.

Hence
A2 = J + (d− 1)I.

Multiplying by A and using the formula for A2 as well as

AJ = dJ and J2 = nJ = (d2 − d+ 1)J

gives expressions for powers of A in terms of A, I and J :

A3 = (d− 1)A+ dJ,

A4 = (d− 1)2I + (d2 + d− 1)J,

A5 = (d− 1)2A+ d(d2 + d− 1)J,

A6 = (d− 1)3I + (d4 + d3 − 2d+ 1)J,

A7 = (d− 1)3A+ d(d4 + d3 − 2d+ 1)J,

and so on. Interesting observation: the even powers are independent of A
and therefore of the graph’s details. We have

A2 ≡ J (mod d− 1) and AJ = dJ ≡ J (mod d− 1).

Hence
Ak ≡ J (mod d− 1) for k ≥ 2.

This means that when k ≥ 2 the number of k-step walks from vertex i to
vertex j (not necessarily distinct from i) is congruent to 1 modulo d − 1.
But those who attended Carrie’s talks already know this.

Let p be a prime. Since the graph has no loops, the closed p-step walks
can be partitioned into sets of size p by the mapping

〈x1, x2, . . . , xp ∼ x1〉 7→ 〈x2, x3, . . . , xp, x1〉.

But the number of p-step walks is congruent to 1 modulo d − 1, a contra-
diction when p divides d− 1. �
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An alternative proof uses linear algebra to show that if the graph exists
then it must have an adjacency matrix having an eigenvalue that occurs
with a non-integer multiplicity. Whether it counts as elementary graph
theory is debateable.

Lemma 1 Let A be an adjacency matrix of a connected d-regular graph.
Then A has eigenvalue d with multiplicity 1 and eigenvector j.

Proof We offer three proofs.
(i) This is well known.
(ii) See [Norman Biggs, Algebraic Graph Theory, Cambridge, 1974].

(iii) We give details as follows.

Clearly Aj = dj. Hence d is an eigenvalue of A with eigenvector j.

Assume the graph’s vertices are 1, 2, . . . , n and denote the neighbours
of m by N(m). Let x = (x1, x2, . . . , xn) be a vector for which Ax = dx, and
suppose xm is an element of x having the maximum absolute value. Then

[Ax]m =
∑

i∈N(m)

xi = dxm.

The sum has d terms. Because |xm| is maximum it follows that xi = xm
for all vertices i ∈ N(m). Since the graph is connected we may repeat the
argument with another xm′ = xm until we have shown that xi = xm for all
vertices i. Therefore x is a multiple of j. �

Lemma 2 Let A be an adjacency matrix of a d-regular graph. If A has
eigenvalue −d, then the graph must be bipartite.

Proof As in the proof of Lemma 1, assume the graph’s vertices are 1,
2, . . . , n, let x = (x1, x2, . . . , xn) be a vector for which Ax = −dx, and
suppose xm is an element of x having the maximum absolute value. Then

[Ax]m =
∑

i∈N(m)

xi = − dxm,

and hence xi = −xm for all vertices i ∈ N(m).

We repeat the argument for ` ∈ N(m) to deduce that xh = −x` = xm
for h ∈ N(`). Since the graph is connected, we can continue in like manner
until we have proved that for every vertex i, xi = −xj if j ∈ N(i). However,
this will lead to a contradiction if the component containing m has a cycle
of odd length.
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By applying the same argument to each component of the graph, we
conclude that there cannot be an odd cycle anywhere. Therefore the graph
must be bipartite. �

Theorem 2 There is no srg(d2 − d+ 1, d, 1, 1) for d > 2.

Proof Let n = d2 − d+ 1, d ≥ 2, and let A be an adjacency matrix of an
srg(n, d, 1, 1). As in Theorem 1 we have

A2 = J + (d− 1)I.

By Lemma 1, A has eigenvalue d with multiplicity 1 and eigenvector j.
Since the graph contains a triangle it cannot be bipartite. Therefore, by
Lemma 2, −d is not an eigenvalue of A.

Let a be an eigenvalue of A corresponding to an eigenvector w 6= 0 that
is orthogonal to j. Then

A2w = Jw + (d− 1)Iw;

therefore
a2w = 0 + (d− 1)w,

and hence
a2 = (d− 1) ⇒ a = ±

√
d− 1.

If the last paragraph is questionable, [Martin Aigner and Günter M.
Ziegler, Proofs from THE BOOK, Springer, 1999] does it differently. The
eigenvalues of J are n with multiplicity 1 and 0 with multiplicity n− 1. So
A2 has eigenvalues d− 1 + n = d2 and d− 1. Since A is symmetric (which
implies A has real eigenvalues) and hence diagonalizable (which implies A’s
eigenvalues are square roots of (A2)’s eigenvalues), we can conclude that
A’s eigenvalues are d and ±

√
d− 1.

We can now write down the eigenvalues of A:

d with multiplicity 1 (by Lemmas 1 and 2),
√
d− 1 with multiplicity r,

−
√
d− 1 with multiplicity s.

But A has trace 0 and n rows; so

d+ r
√
d− 1− s

√
d− 1 = 0, 1 + r + s = n = d2 − d+ 1.
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Solving in the usual way for r and s gives

r =
1

2

(
n− 1− d√

d− 1

)
, s =

1

2

(
n− 1 +

d√
d− 1

)
.

If d = 2, then r = 0, s = 2 and we have an srg(3, 2, 1, 1), i.e. a triangle,
which has eigenvalues 2, −1, −1.

On the other hand, if d > 2, then r and s are not integers unless
possibly d − 1 is a square that divides d2. But this cannot happen since
d ≡ 1 (mod d− 1). �

If you happen to be reading M500 65 (August 1980), you will notice that
Problem 65.4 – Friends by Robin Wilson is about something different.

(a) At a gathering of 150 people, why must there be at least two persons
with the same number of friends?

(b) They play in a tennis (singles) tournament. In the 1st round there
are 75 matches, in the 2nd 37 matches and one bye, . . . . How many
matches?

Both parts were answered by several readers in M500 67.

Problem 321.2 – Telephone message
Tony Forbes
I want to send a message to someone using my AI-enhanced smart phone.
For each word, I just enter the first letter and then I choose at random
one of the two words that the system has suggested. Can you estimate the
chances of my message being understood? Assume punctuation is entered
correctly.

Here is an example. See if you can decipher it before turning page 18
upside down.

If also one time the. People have my done real for

me when it gives him.

I suspect the answer is almost certainly, provided the message is sufficiently
long or repeated sufficiently often. However, I might be wrong. My device
actually makes three suggestions, but one of them is just the letter by itself
and is therefore rejected.
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Solution 319.1 – Sum
For positive integer r, show that

1

r2 + (r + 1)2
+

1

(3r + 1)2 + (3r + 2)2
+

1

(5r + 2)2 + (5r + 3)2
+ . . .

=
π

4r + 2
tanh

π

4r + 2
.

David Sixsmith
We are asked to show that

∞∑
n=1

1

((2n− 1)r + n− 1)2 + ((2n− 1)r + n)2
=

π

4r + 2
tanh

π

4r + 2
, (1)

where r is a positive integer. In fact we will prove the stronger result that
(1) holds for all complex r outside an exceptional set which contains no
integers.

We begin with the Weierstrass product representation of cosh,

coshπz =

∞∏
n=1

(
1 +

z2

(n− 1/2)2

)
. (2)

Suppose coshπz is not zero, in other words z is not an odd integer
multiple of i/2. Then we can take a logarithm of (2), differentiate, and
multiply by z, to obtain

πz tanhπz =

∞∑
n=1

2z2

z2 + (n− 1/2)2
. (3)

Replacing z with 1/(4r + 2) gives (1); this can be seen by observing,
after a calculation, that

((2n− 1)r + n− 1)2 + ((2n− 1)r + n)2 =
1

2
((n− 1/2)2(4r + 2)2 + 1).

It remains to note the values of r for which the above analysis fails.
Firstly, there are the values of r which correspond to the zeros of coshπz,
in other words

r =
i

2(2n− 1)
− 1

2
, for n ∈ Z.
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These are exactly the values of r for which one of the terms in the series in
(1) is undefined.

Secondly, there is the value r = −1/2, which does not correspond to
any finite value of z. When r = −1/2, each term in (1) is defined, but the
series does not converge.

Finally, we note that dividing both sides of (3) by z2, and then replacing
z with (r − 2)/(2r) gives an alternative (and more general) solution to
Problem 315.7.

Problem 321.3 – Simplification

Tony Forbes

Simplify x(−xk)−1/k, where x is real and k is a positive integer.

This factor occurs when I ask Mathematica to evaluate the expression
at the end of [1]:∫ x

0

et
k

dt = ex
k
∞∑
n=0

(−1)nknxkn+1∏n
i=0 (ki+ 1)

=
x(−xk)−1/k

k

(
Γ

(
1

k

)
− Γ

(
1

k
,−xk

))
,

where Γ(a, z) =
∫∞
z
ta−1e−t dt, which generalizes the gamma function,

which of course generalizes the factorial-minus-one function,

(a− 1)! = Γ(a) =

∫ ∞
0

ta−1e−t dt = Γ(a, 0).

The gamma function is an example of a case where logic and good sense
play no part in the development of mathematical notation. Surely we don’t
need to define Γ(a) with that annoying −1 when natural extensions of the
factorial function are readily available:

a! =

∫ ∞
0

tae−t dt and (a, z)! =

∫ ∞
z

tae−t dt.

[1] Mako Sawin, Solving the integral
∫
ex

k

dx by parts, M500 317, 18–20.

Iamonthetrain.PleasehavemydinnerreadyformewhenIgethome.
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An icosahedral die

Tony Forbes

For a vertex v of a given polyhedron with labelled faces, denote by Sv the
sum of the labels of the faces that have v as a common point.

The pictures show three views of a typical icosahedral die with the faces
labelled 1, 2, . . . , 20.

If we list the labels of the faces that meet each vertex v of the die in the pic-
tures, we have {1,16,9,19,17}, {1,17,15,3,14}, {1,14,10,8,16}, {2,4,6,8,10},
{2,10,14,3,12}, {2,12,5,20,4}, {3,12,5,13,15}, {4,6,18,7,20}, {5,13,11,7,20},
{6,18,9,16,8}, {7,11,19,9,18}, {11,13,15,17,19}, and when we calculate the
sums Sv we obtain

62, 50, 49, 30, 41, 43, 48, 55, 56, 57, 64, 75.

In my opinion it would be nice if one could label the die in such a manner
that the five faces at each vertex sum to the same constant value, S say;
that is, Sv = S for all vertices v. However, a little analysis shows that this
is impossible to achieve. The sum of all 20 labels is 210, and each vertex
sum must account for five twentieths of this total. That is, S = 210 ·5/20 =
105/2, which needs to be integer.

If we cannot have a constant sum, the next best arrangement would be
Sv = 52 for six vertices and Sv = 53 for the other six. But how does one go
about constructing such a labelling? Instead of trying to work out a clever
way I opted for a sledgehammerish approach.

What I find slightly amazing is that the simple algorithm described on
the next page actually works. I was not expecting an instant result, but
it did get there eventually. The die is illustrated in Figure 1 as a planar
graph, where the label of vertex v is Sv.
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(1) Label the faces of the icosahedron with a random permutation of
(1, 2, . . . , 20).

(2) Choose vertices a and b such that Sa takes the maximum value and
Sb takes the minimum value.

(3) If Sa = 53 and Sb = 52, then STOP since the required labelling has
been found.

(4) Choose a face Fa with label La adjacent to vertex a and a face Fb
with label Lb adjacent to vertex b such that La > Lb.

(5) Swap labels La and Lb. That is, label Fa with Lb and Fb with La.

(6) If we think we are in a tight loop, go to (1). Otherwise go to (2).

53
53

52

53

52
52

53

52

53

53

52

52

12
11

19

9

5

62

10

3 18

17 8

14

415

16

20

13

7
1

Figure 1: An icosahedral die

Naturally, one wonders if one can do something similar with the other
four Platonic solids.



M500 321 Page 21

8

32

1

7

5

6
4

Figure 2: An octahedral die

The tetrahedron won’t work because each sum 6, 7, 8, 9 is unavoidable.
Nor will the cube, where the sums Sv must be 10 or 11, i.e. 3(1 + 2 + · · ·+
6)/6±0.5. But that means 1 and 2 must label opposite faces, in which case
we cannot avoid Sv = 1 + 3 + x with x ≤ 5.

The octahedron is a pleasant surprise. This time we have a constant
sum. We can label the faces with 1, 2, . . . , 8 such that Sv = 18 for each
vertex v. See Figure 2.

For the dodecahedron, Sv must be either 19 or 20. Consider the face
with label 1, F1 say, and the five faces adjacent to it. The only pairs of
integers that sum to 18 or 19 are

P = {{6, 12}, {7, 11}, {7, 12}, {8, 10}, {8, 11}, {9, 10}}.

But {6, 12} and {9, 10} are inadmissible because 6 and 9 each occur only
once in P . So the faces adjacent to F1 must have labels 7, 8, 10, 11, 12 in
some order. However, 12 occurs only once in P \ {{6, 12}, {9, 10}}.

Not long after I had written the last sentence, above, I discovered that
the icosahedral die problem had already been solved. Take a look at

https://mathartfun.com/thedicelab.com/BalancedStdPoly.html.

Furthermore, their die is much better than the one shown in Figure 1.
Opposite labels sum to 21 and the three faces adjacent to a triangle always
have labels that sum to 31.5± 0.5.

https://mathartfun.com/thedicelab.com/BalancedStdPoly.html
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Problem 321.4 – Zeros at the end of (n!)!
As Dave Wild pointed out (to me (TF), private communication), a glance
at the last few entries of the table at the end of Jodie Forbes’s Solution
319.5 – Factorial factorial (pages 6–7 of this issue) might lead one to believe
that (n!)! ends in approximately n!/4 zeros. A problem is suggested.

Prove that for large n, (n!)! terminates in
(n!− n log n)

4
+O(n) zeros.

Front cover A 4-regular graph with 105 vertices and girth 6.


